MHB Simplify and state any restrictions on the variables.

Click For Summary
The discussion focuses on simplifying two algebraic expressions and identifying errors in the simplification process. In the first expression, the correct approach involves factoring out a common term from the numerator rather than expanding it unnecessarily. The second expression also highlights a mistake in the denominator's simplification, where the factorization was incorrect. Participants emphasize the importance of correctly identifying and canceling common factors to achieve the proper simplification. Overall, the thread underscores the need for careful attention to detail in algebraic manipulations.
eleventhxhour
Messages
73
Reaction score
0
Simplify

1) Simplify and state any restrictions on the variables:

$$\frac{3a-6}{a+2} ÷ \frac{a-2}{a+2} $$

This is what I did. Can someone tell me what I did wrong? Thanks.

$$\frac{3a-6}{a+2} ⋅ \frac{a+2}{a-2} $$

$$\frac{3a^2-12}{a^2-4}$$

$$\frac{(3a+6)(a-2)}{(a+2)(a-2)}$$

$$\frac{3a+6}{a+2}$$

$$3 + \frac{6}{2}$$

$$= 6$$

Here is another one where I got the wrong answer, but I'm not sure what I did wrong:

2) Simplify and state any restrictions on the variables:
$$\frac{2(x-2)}{9x^3} ⋅ \frac{12x^4}{2-x} $$

This is what I did:

$$\frac{-2(-x+2)}{9x^3} ⋅ \frac{12x^4}{2-x} $$

$$\frac{-2}{9x^3} ⋅ 12x^4 $$

$$\frac{-24x^4}{9x^3} $$

$$\frac{3x^3(-8x)}{3x^3(9)} $$

$$\frac{-8x}{9} $$
 
Last edited:
Mathematics news on Phys.org
Re: Simplify

eleventhxhour said:
$$\frac{3a+6}{a+2}$$

$$3 + \frac{6}{2}$$
\[
\frac{x_1+y_1}{x_2+y_2}\ne\frac{x_1}{y_1}+\frac{x_2}{y_2}
\]
Also, there is no reason to convert $(3a-6)(a+2)$ to $3a^2-12$ and then factor it again as $(3a+6)(a-2)$. Instead, you should have factored 3 out of $3a-6$ and cancel the resulting $a-2$.

eleventhxhour said:
$$\frac{-24x^4}{9x^3} $$

$$\frac{3x^3(-8x)}{3x^3(9)} $$
The last denominator should be $3x^3\cdot3$ instead of $3x^3\cdot9$.
 
Thanks! That helped a lot.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
1K