Consider the following:(adsbygoogle = window.adsbygoogle || []).push({});

On a circle of radius 1, two points are marked: P1 and P2.

Two lines are drawn from the center of the circle:

one from the center to P1,

the other from the center to P2.

The angle between these two lines is [itex]\theta[/itex].

One more line is drawn: from P1 directly to P2. In other words, this third line is a chord on this circle.

For the special condition that the length of this chord equals the angle, find a simple expression.

i.e. – find a simple expression for [itex]\theta[/itex] given the special condition that chord length = [itex]\theta[/itex] = angle = [itex]\theta[/itex]

- - -

So far, all the expressions that I have worked out mix terms of [itex]\theta[/itex] and either sin([itex]\theta[/itex]) or cos([itex]\theta[/itex]); I have not been able to find an expression simply in terms of [itex]\theta[/itex], sin([itex]\theta[/itex]), or cos([itex]\theta[/itex]).

For example, following is one of my approaches:

Bisect the angle [itex]\theta[/itex], which also divides the chord in half.

The chord length is [itex]\theta[/itex].

But this value is also 2 sin([itex]\theta[/itex]/2)

Equating these two expressions: 2 sin([itex]\theta[/itex]/2) = [itex]\theta[/itex] or sin([itex]\theta[/itex]/2) = [itex]\theta[/itex]/2

I cannot find a way to simplify this expression further.

Any suggestions?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Simplify Condition for Chord Length Equals Angle?

**Physics Forums | Science Articles, Homework Help, Discussion**