MHB Simplify Multiplication of Fractions

Click For Summary
The discussion focuses on simplifying the sum of a series involving fractions with factorials in the denominator. The series is expressed as a telescoping sum, which allows for significant simplification. By rewriting the original series, it is shown that the sum can be reduced to a difference of factorial terms. The final result is calculated as 2 multiplied by the difference between the reciprocal of 3! and 100!. This approach effectively simplifies the multiplication of fractions in the given series.
Albert1
Messages
1,221
Reaction score
0
$\dfrac{3}{3\times 4}+\dfrac{4}{3\times 4\times 5}+\dfrac{5}{3\times 4\times 5\times 6}+\cdots+\dfrac {99}{3\times 4\times 5\times 6\times \cdots\times 99\times 100}$
 
Last edited by a moderator:
Mathematics news on Phys.org
Re: count value

Albert said:
$\dfrac{3}{3\times 4}+\dfrac{4}{3\times 4\times 5}+\dfrac{5}{3\times 4\times 5\times 6}+ \cdots +\dfrac {99}{3\times 4\times 5\times 6\times \cdots \times 99\times 100}$

$=2 \left( \dfrac{3}{2 \times 3\times 4}+\dfrac{4}{2\times 3\times 4\times 5}+\dfrac{5}{2\times 3\times 4\times 5\times 6}+ \cdots +\dfrac {99}{2 \times 3\times 4\times 5\times 6\times \cdots \times 99\times 100} \right)$

$$=2 \sum^{100}_ {n=4} \frac{n-1}{n!}=2 \sum^{100}_ {n=4} \frac{1}{(n-1)!}-\frac{1}{n!} $$

The sum is telescoping

$$2\left( \dfrac{1}{3!} -\dfrac{1}{4!} + \dfrac{1}{4!} - \dfrac{1}{5!} + \frac{1}{5!}-\frac{1}{6!}+ \cdots +\dfrac {1}{99!} - \dfrac {1}{100!} \right)= 2 \left(\dfrac{1}{3!}-\dfrac{1}{100!} \right) $$
 

Similar threads

Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
3
Views
924
Replies
1
Views
1K