# Simplifying and then expressing complex numbers in cartesian form

## Homework Statement

(2 CIS (pi/6))*(3 CIS (pi/12))

## Homework Equations

Also what is CIS? I believe it's Cos+i*sin but how do you use it?

## The Attempt at a Solution

i simplified it to

6 CIS (pi/12)

How do i turn it into cartesian?

tiny-tim
Homework Helper
Hi Stripe! (have a pi: π )

I've never seen "CIS" before, but I'll guess you're right, and that it's cos + i*sin.

Now use De Moivre's theorem … cosθ + isinθ = e And Cartesian form simply means in the form x + iy (as opposed to polar form, which is in the form re )

(and no, it's not 6 CIS (π/12))

Last edited:
HallsofIvy
"$Cis(\theta)$" is engineering notation for "$cos(\theta)+ i sin(\theta)$" which mathematicians tend to write as $e^{i\theta}$.
The important thing about that notation is that $(Cis(\theta)*Cis(\phi)= Cis(\theta+ \phi)$.
So you have correctly deduced that $(2Cis(\pi/6))(3Cis(\pi/12)= 6 Cis(3\pi/12)= 6 Cis(\pi/4)$
Now, just use the definition: $6 Cis(\pi/4)= 6 cos(\pi/4)+ 6i sin(\pi/4)$.