MHB Simplifying radicals - Help with basic number manipulation

AI Thread Summary
The discussion focuses on simplifying the expression (sqrt6/sqrt7) * sqrt21. The correct method involves moving sqrt7 to the denominator of sqrt21, simplifying it to sqrt6 * sqrt3, which equals 3sqrt2. A participant initially made an error by incorrectly multiplying by sqrt7/sqrt7, leading to confusion in their calculations. The conversation emphasizes the importance of simplicity in mathematical operations and encourages using straightforward methods for clarity.
Comscistudent
Messages
18
Reaction score
0
Hi I'm trying to give myself a refresher in Leaving Cert maths and I'm running through some problems. Here's one which has me stumped (sorry I can't figure out how to show the actual symbols on the post, it's just showing as raw LaTEX when I try )

Combine terms and simplify the expression of -

(sqrt6/sqrt7) * sqrt21

The actual answer is that you move the /sqrt7 to the sqrt21 to end up with sqrt6 * sqrt3 = 2sqrt3

I missed this and instead multiplied the right hand term by sqrt7/sqrt7 but my answer is different. Can someone explain why my logic is incorrect?

(sqrt6/sqrt7) * ( (sqrt21*sqrt7)/sqrt7 )
sqrt6/sqrt7 * sqrt147/sqrt7
sqrt882/sqrt7
3sqrt14
 
Mathematics news on Phys.org
Hi TubeAlloy and welcome to MHB! :D

$$\dfrac{\sqrt6}{\sqrt7}\cdot\sqrt{21}=\sqrt{18}=3\sqrt2$$

TubeAlloy said:
(sqrt6/sqrt7) * ( (sqrt21*sqrt7)/sqrt7 )
sqrt6/sqrt7 * sqrt147/sqrt7
sqrt882/sqrt7
3sqrt14

Your logic is fine but you've made an error in your calculation. Can you spot it?

Quote this post to see how I coded the $\LaTeX$.
 
Oh wow I feel so silly, thanks a million for the help once I knew I wasn't doing something wrong I was able to spot the error.

$$\dfrac{\sqrt6}{\sqrt7}\cdot\dfrac{\sqrt147}{\sqrt7}$$

This is $$\dfrac{\sqrt882}{\sqrt49}$$ not $$\dfrac{\sqrt882}{\sqrt7}$$ as I had thought

So then it's $$\sqrt18$$ == $$3\sqrt2$$
 
Good work!

To get all of the numbers in a radical under the square root sign use \sqrt{123}. Note the curly braces. :)
 
TubeAlloy said:
Combine terms and simplify the expression: \frac{\sqrt{6}}{\sqrt{7}}\cdot\sqrt{21}

The actual answer is that you move the /sqrt7 to the sqrt21 to end up with sqrt6 * sqrt3 = 2sqrt3

I missed this and instead multiplied the right hand term by sqrt7/sqrt7 . Why?
but my answer is different. Can someone explain why my logic is incorrect?

(sqrt6/sqrt7) * ( (sqrt21*sqrt7)/sqrt7 )
sqrt6/sqrt7 * sqrt147/sqrt7
sqrt882/sqrt7
3sqrt14
Did some teacher tell you, "To simplify radicals,
introduce more radicals into the expression" ?

Here is the recommended way to simplify it:

. . \begin{array}{ccc}<br /> \dfrac{\sqrt{6}}{\sqrt{7}}\cdot\sqrt{21} &amp;=&amp; \sqrt{6}\cdot\dfrac{\sqrt{21}}{\sqrt{7}} \\ <br /> &amp;= &amp; \sqrt{6}\cdot\sqrt{\dfrac{21}{7}} \\ <br /> &amp; = &amp; \sqrt6\cdot\sqrt{3} \\<br /> &amp; = &amp; \sqrt{18} \\<br /> &amp;=&amp; \sqrt{9\cdot2} \\<br /> &amp;=&amp; \sqrt{9}\cdot\sqrt{2} \\<br /> &amp;=&amp; 3\sqrt{2} \end{array}


 
soroban has made an excellent point: the simpler the better! It's good to see experimentation with other methods though, and I think it's good that the error was spotted. Sometimes the simpler approach is not always realized so it's a good thing to be able to adapt one's skill set to the problem at hand. But at the end of the day, I think striving for simplicity is the best approach.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top