MHB Simplyfying (1+(1/x)/(1+1/x))×(1+(1/x)/(1−1/x))

  • Thread starter Thread starter Yazan975
  • Start date Start date
Click For Summary
The expression simplifies to $\left(1+ \frac{\frac{1}{x}}{1+\frac{1}{x}}\right)\times\left(1+ \frac{\frac{1}{x}}{1- \frac{1}{x}}\right)$ by first transforming the fractions to $\frac{1}{x+1}$ and $\frac{1}{x-1}$. This leads to $\left(1+ \frac{1}{1+x}\right)\times\left(1+ \frac{1}{x-1}\right)$. Adding the fractions results in $\frac{x+2}{1+x}$ and $\frac{x}{x-1}$, respectively. The final product simplifies to $\frac{x^2 + 2x}{x^2 - 1}$.
Yazan975
Messages
30
Reaction score
0

Attachments

  • Screen Shot 2018-09-14 at 3.22.48 PM-min.png
    Screen Shot 2018-09-14 at 3.22.48 PM-min.png
    27.6 KB · Views: 96
Mathematics news on Phys.org
$\left(1+ \frac{\frac{1}{x}}{1+\frac{1}{x}}\right)\times\left(1+ \frac{\frac{1}{x}}{1- \frac{1}{x}}\right)$

Multiply both numerator and denominator of $\frac{\frac{1}{x}}{1+ \frac{1}{x}}$ by x to get $\frac{1}{x+ 1}$ and both numerator and denominator of $\frac{\frac{1}{x}}{1- \frac{1}{x}}$ to get $\frac{1}{x- 1}$. Now we have $\left(1+ \frac{1}{1+ x}\right)\times \left(1+ \frac{1}{x- 1}\right)$.Add the fractions in the left parentheses: $\left(1+ \frac{1}{1+ x}\right)= \left(\frac{1+ x}{1+ x}+ \frac{1}{1+ x}\right)= \left(\frac{x+ 2}{1+ x}\right)$

Add the fractions in the right parentheses: $\left(1+ \frac{1}{x- 1}\right)= \left(\frac{x- 1}{x- 1}+ \frac{1}{x- 1}\right)= \left(\frac{x}{x- 1}\right)$.So now the product is $\left(\frac{x+ 2}{1+ x}\right)\left(\frac{x}{x- 1}\right)= \frac{x^2+ 2x}{x^2- 1}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 19 ·
Replies
19
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K