Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Sine integral

  1. Mar 6, 2016 #1

    stevendaryl

    User Avatar
    Staff Emeritus
    Science Advisor

    Properly speaking, since [itex]sin(x)[/itex] and [itex]cos(x)[/itex] don't go to zero as [itex]x \rightarrow \infty[/itex], the following integrals are undefined:

    [itex]\int_0^{\infty} cos(kx) dk[/itex]
    [itex]\int_0^{\infty} sin(kx) dk[/itex]

    However, in the handwavy way of physicists, we can often pretend that the cosine integral "converges" to [itex]\delta(x)[/itex], where [itex]\delta(x)[/itex] is defined via:

    [itex]\int dx \delta(x) f(x) = f(0)[/itex]

    This interpretation is sort-of justified because for nicely-behaved functions [itex]f[/itex], we can prove:

    [itex]\int_{0}^{+\infty} dk (\int_{-\infty}^{+\infty} f(x) cos(kx) dx) = f(0)[/itex]

    If we blithely switch the order of integration, then we can write this as:

    [itex]\int_{-\infty}^{+\infty} dx f(x) (\int_{0}^{+\infty} cos(kx) dk) = f(0)[/itex]

    which sort of justifies identifies the inner integral with [itex]\delta(x)[/itex].

    My question is: Is there a related, equally hand-wavy interpretation of the sine integral?
     
  2. jcsd
  3. Mar 6, 2016 #2
    how you can say that? we know the function oscillates!
     
  4. Mar 6, 2016 #3

    stevendaryl

    User Avatar
    Staff Emeritus
    Science Advisor

    That's why the word "converges" is in scare-quotes. The integral doesn't converge. However, for certain purposes, we can often act as if it converges to the delta function. (And for certain purposes, we can act as if the delta function is actually a function).
     
    Last edited: Mar 6, 2016
  5. Mar 8, 2016 #4
    That's typical answer of Mathematicians a century ago !
     
  6. Mar 8, 2016 #5

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    By substituting ##\sin(kx)=\cos(kx-\pi/2)## into the integral of sine and then use the substitution technique to compute the integral as well as the hand-wavy definition of the cosine integral, I got an extremely unintuitive answer of ##\pi/(2x)##.
     
  7. Mar 8, 2016 #6

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    And still the answer in the ongoing war between mathematicians and physicists!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted