• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Sine series for cos(x) (FOURIER SERIES)

  • Thread starter konradz
  • Start date
I was finally able to figure out how to find the sine series for cos(x), but only for [0,2pi]. A question i have though is what is the interval of validity? is it only [0,pi]?
Ie if I actually had to sketch the graph of the sum of the series, on all of R, would I have cosine or just a periodic extension of cosine from [0,2pi]?
 

CompuChip

Science Advisor
Homework Helper
4,285
47
Hey Konrad, welcome to PF.
I am afraid I don't entirely understand your question. You say that you have managed to write cos(x) as a(n infinite) sum of sines on the interval [0, 2pi].
But both cos(x) and the sines you used are periodic with period 2pi, aren't they? So if the infinite sum converges to cos(x) on an interval with a length of at least one period, then it converges to cos(x) everywhere, doesn't it?
 

LCKurtz

Science Advisor
Homework Helper
Insights Author
Gold Member
9,466
715
If you have expanded cos(x) in a sine series using [itex]p = 2\pi[/itex] in the formula
[tex] b_n = \frac 2 p \int_0^p \cos(x) \sin{\frac{n\pi x}{p}}\,dx[/tex]
what you are representing is the [itex]4\pi[/itex] periodic odd extension of cos(x).

[edit - corrected typo: bn not an]
 
Last edited:

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top