# Sketch the region R=T(S) in xy-space

1. Homework Statement

Consider the rectangle S=[0,1]x[0,$$\pi$$/2]
Sketch the region R=T(S) in xy-space.

2. Homework Equations
T(r,$$\theta$$) = (rcos$$\theta$$,rsin$$\theta$$)

3. The Attempt at a Solution
how is the given a rectangle in polar coordinates? it seems to me to be a quarter circle

Last edited:

Related Calculus and Beyond Homework Help News on Phys.org
Dick
Homework Helper
S is a 'rectangle' in cartesian [r,theta] space. The image of T in cartesian [x,y] space is, indeed, a quarter circle. If you regard T as a transformation between polar r-theta coordinates and cartesian x-y coordinates then it is really a quarter circle in both. I'll admit the difference is a bit confusing if you are used to thinking of r,theta as polar coordinates. If it helps try thinking of T(x,y)=(x*cos(y),x*sin(y)) both in cartesian coordinates. That really does take a rectangle into a quarter circle.

Last edited:
tiny-tim
Homework Helper
Welcome to PF!

Hi stvnseagal! Welcome to PF! I think the question is just trying to confuse you …

Technically, "rectangle" means all its angles are right-angles - which they are! It's just that there's only three of them! Don't worry! HallsofIvy
It is a rectangle in "r, $\theta$" space, not in x,y space. Since the two vertices (0, 0) and (0, $\pi/2$) both have r= 0, T transforms both of them into the single point (0,0) in x,y space. (1, 0) in r, $\theta$ space is transformed into (1, 0) in xy space and (0, 1) in r, $\theta$ space is transformed into (0, 1) in xy space.
Tiny Tim, "technically" a rectangle has four vertices! As I said, the "rectangle" part on applies to r, $\theta$ space.