What Does the Cover of Slice of Pie's Album Reveal About Relativity?

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
can someone explain to me what does the picture in the website below describe? (it has to do with something in relativity because there is the picture of einstein in it):
http://www.ts.skwerm.com/mojo/sliceofpi/

btw the picture is the cover of slice of pie's album.
 
Last edited by a moderator:
Physics news on Phys.org
I think it is more likely dealing with the photo-electric effect, or something dealing with EM fields in matter. The vector diagram looks like it is representing displacement field (D), magnetic field(H), and the Poynting vector. The latter is usually represented by an "S" nowadays, but maybe in 1905 it was represented by a capital Pi.

I can't see the details of the part on the left.

Njorl
 
and on the right the elipses what are they represent?
 
I also can't tell my left from my right
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top