SO(32) in Superstring Theory: Physical Meaning

  • Thread starter Thread starter arivero
  • Start date Start date
  • Tags Tags
    Strings
arivero
Gold Member
Messages
3,481
Reaction score
187
Could someone tell about the physical meaning of these SO(32) groups in superstring theory?

I am under the impression that it is a symmetry of the quantum superstring, but that it is not a symmetry of any underlying classical model, is it? Because if it is so, it is very different of the GUT groups, which are also symmetries of the field Lagrangian.
 
Physics news on Phys.org
arivero said:
Could someone tell about the physical meaning of these SO(32) groups in superstring theory?

I am under the impression that it is a symmetry of the quantum superstring, but that it is not a symmetry of any underlying classical model, is it? Because if it is so, it is very different of the GUT groups, which are also symmetries of the field Lagrangian.
You are right, the gauge degrees of freedom in string theory appear only on the quantum level. But in a sense, it is not much different from that in particle physics. Namely, you can view a classical gauge field as a first quantized wave function, so you can say that the gauge degrees of freedom of particles also appear only at the quantum (first quantized) level. By the way, most of the results in string theory are expressed in the first quantized language, while second quantization of string theory (string field theory) is not well understood and there are even indications that string field theory is not the correct approach.
 
By the way, most of the results in string theory are expressed in the first quantized language, while second quantization of string theory (string field theory) is not well understood and there are even indications that string field theory is not the correct approach.

What are all these papers by this guy Shnabl, then?
 
Demystifier said:
Namely, you can view a classical gauge field as a first quantized wave function, so you can say that the gauge degrees of freedom of particles also appear only at the quantum (first quantized) level.

Yep, I though, while writing the question that this was the answer. But I asked anyway because I am not sure. One gets the feeling that gauge fields, or at least abelian gauge fields, can be recovered in a classical level, while the SO(32) etc of string theory seem to be intrinsically quantum. Part of the answer seems to lie in
N. Marcus and A. Sagnotti, “Group Theory From ’Quarks’ At The Ends Of Strings,”
Phys. Lett. B188 (1987) 58. http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B188,58

Further references:
http://www.roma2.infn.it/stringaperta/berlin.ps
http://motls.blogspot.com/2007/08/answering-few-string-related-questions.html
http://arxiv.org/abs/hep-th/0208020
http://arxiv.org/abs/hep-th/0204089
http://arxiv.org/abs/hep-th/0203098v1
 
Last edited by a moderator:
Thread 'LQG Legend Writes Paper Claiming GR Explains Dark Matter Phenomena'
A new group of investigators are attempting something similar to Deur's work, which seeks to explain dark matter phenomena with general relativity corrections to Newtonian gravity is systems like galaxies. Deur's most similar publication to this one along these lines was: One thing that makes this new paper notable is that the corresponding author is Giorgio Immirzi, the person after whom the somewhat mysterious Immirzi parameter of Loop Quantum Gravity is named. I will be reviewing the...
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
Back
Top