Ah... yes. I see what I was missing. The barycentre position is a function of the inverse of the distance and the mass, the gravitational force is a function of the inverse of the square of the distance and the mass. So the net force and acceleration vectors point in the same direction but it is not towards the SSBC except in the two body case and only coincidentally then. I stand corrected.
So .. is there a name for the location towards which a given body accelerates under the gravitational influence of n-1 other bodies? "Centre of Gravity" sounds right but has a different meaning. Can we call it the "Momentary Centre of Revolution"? The implication here is that from moment to moment the direction of the acceleration vector changes and the position of the intersections of these vectors changes from moment to moment also. So for the Earth we have a Momentary Centre of Revolution - Earth or MCoRE for short!
I did say "Orbital mechanics is not my specialty so there is a limit to my understanding here."
Given that correction about the point towards which the Earth is accelerating most of what I have said previously about semantics and simplifications still seems to hold, with the exception of a couple of bits about the variation in the Sun Earth distance.
Lets see if I can do better this time. Going back to the four points in Andrew's post #42 of last week:-
1. This point of view is wrong. This group is probably working under the same misunderstanding as I was. The SSBC is not the point to which the acceleration and force vectors point. If you substitute MCoRE for SSBC in my statements above a lot of what I said follows with the exception of the actual distances from Sun and Earth to MCoRE and also note that the MCoR will be in a different position for every body in the Solar System. Hence that dropped apple accelerates towards the Earth not the SSBC. (I do like a simple reductio ad absurdum to show me how thick I have been!)
2. To say that the "orbit" of the Earth has a "principal focus" is semantics. These terms have meaning only in a simplified two body model. This is an approximation, not reality. Whether or not you think it is a "rough" approximation depends on your definition of "rough". See my previous comments about simplifications in post #41. Note that if we were talking about Mercury, not Earth, it would be more obviously "rough" and we would need to use General Relativity to get a "smooth" approximation.
3. Viewpoint 1 is just plain wrong, (like I was), 2 is an approximation. Does that make it "wrong" or just "less correct"? That all depends on how precise you want to be. It might be better to say viewpoint 2 is accurate within certain limits of precision. Those limits of precision must be greater than the effects of the other planets.
4. The arrangement described by Newton is still a simplification.
Bandersnatch's third last paragraph in #47 above is a fair summary. Note that it does not use the words "focus" or "orbit". (And now I know more orbital mechanics than previously.)
An aside: In my role as a science educator I often come across similar debates amongst students which ultimately derive from a combination of misconceptions, (like mine), poorly defined terms, poorly defined frames of reference and lots of semantics. The semantics are often like those here with terms being used which are human descriptions not properties of objects. On occasion I come across debates in similar places to this where the initial post stems from these confusions. One of the difficulties which responders often have is detecting those misconceptions and confusions and addressing them. Responders often go into long and convoluted explanations which add layers of complexity but which never dig to the base of the misconceptions and they often add their own semantic confusion. (And then there are the loonies who add their own peculiar personal confusions which are occasionally entertaining but often just a rabbit hole of distraction. This discussion appears to have escaped their attention so far.)
There is good research to show that unless misconceptions are addressed explicitly real understanding will not take hold if it conflicts with the misconception. Given a choice between new, correct idea and old, wrong idea, students throw away the new one. This discussion has been the first time I have been made aware of a misconception of my own which has been a block to understanding.
Have I missed anything pertinent to the original post?