It's one of these 3 equations. Basically a variant of the http://en.wikipedia.org/wiki/Plastic_number" .
Note that x_{i1} is one imaginary root, x_{i2} is another, and lastly x_{r} is the real root.
x_{i1}=\left( -\frac{\sqrt{3}\,i}{2}-\frac{1}{2}\right) \,{\left( \frac{\sqrt{27\,{y}^{2}-4}}{2\times{3}^{\frac{3}{2}}}-\frac{y}{2}\right) }^{\frac{1}{3}}+\frac{\frac{\sqrt{3}\,i}{2}-\frac{1}{2}}{3\,{\left( \frac{\sqrt{27\,{y}^{2}-4}}{2\times{3}^{\frac{3}{2}}}-\frac{y}{2}\right) }^{\frac{1}{3}}}
x_{i2}=\left( \frac{\sqrt{3}\,i}{2}-\frac{1}{2}\right) \,{\left( \frac{\sqrt{27\,{y}^{2}-4}}{2\times{3}^{\frac{3}{2}}}-\frac{y}{2}\right) }^{\frac{1}{3}}+\frac{-\frac{\sqrt{3}\,i}{2}-\frac{1}{2}}{3\,{\left( \frac{\sqrt{27\,{y}^{2}-4}}{2\times{3}^{\frac{3}{2}}}-\frac{y}{2}\right) }^{\frac{1}{3}}}
x_{r}={\left( \frac{\sqrt{27\,{y}^{2}-4}}{2\times{3}^{\frac{3}{2}}}-\frac{y}{2}\right) }^{\frac{1}{3}}+\frac{1}{3\,{\left( \frac{\sqrt{27\,{y}^{2}-4}}{2\times{3}^{\frac{3}{2}}}-\frac{y}{2}\right) }^{\frac{1}{3}}}
Corrected it a bit... looked like 233/2 instead of 2*33/2. Thus the 2x3...