MHB Solutions to x^3+...+y^3=y^3 in Integers

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers
AI Thread Summary
The equation x^3 + (x+1)^3 + ... + (x+7)^3 = y^3 simplifies to 8x^3 + 84x^2 + 420x + 784 = (2x+7)(4x^2 + 28x + 112) = z(z^2 + 63), where z = 2x + 7. The analysis shows that for positive solutions, y must be greater than z, leading to the constraint that z must be less than 20. After checking odd integers from 1 to 19, the only valid pairs (y, z) are (±4, ±1) and (±6, ±3), resulting in four integer solutions for (x, y): (-5, -6), (-4, -4), (-3, 4), and (-2, 6). The discussion concludes that these are the only solutions within the specified bounds for x.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all solutions in integers of the equation

$$x^3+(x+1)^3+(x+2)^3+\cdots+(x+7)^3=y^3$$
 
Mathematics news on Phys.org
[sp]$x^3+(x+1)^3+(x+2)^3+\cdots+(x+7)^3=8x^3 + 84x^2 + 420x + 784 = (2x+7)(4x^2 + 28x + 112) = z(z^2+63)$, where $z=2x+7$. Thus $z$ is an odd integer and $z(z^2+63) = y^3$. If $(y,z)$ is a solution then so is $(-y,-z)$, so concentrate on the case where $y$ and $z$ are both positive. Since $y^3 = z^3 + 63z$ it is clear that $y>z$ and so $y\geqslant z+1$. Therefore $z^3+63z \geqslant (z+1)^3 = z^3 + 3z^2 + 3z + 1$, so that $3z^2 -60z + 1 \leqslant 0.$ Writing this as $3z(z-20) + 1 \leqslant 0$, you see that $z<20$. When you check the odd numbers from $1$ to $19$, you find that the only solutions are when $z=1$ and $z=3$. Thus the solutions (including the negative ones) for $(y,z)$ are $(\pm4,\pm1)$ and $(\pm6,\pm3)$; and the solutions for $(x,y)$ are $(-5,-6),\: (-4,-4),\: (-3,4),\:(-2,6).$[/sp]
 
Last edited:
Thanks Opalg for participating and you have gotten all 4 correct solutions!

Here is the method I saw somewhere that is different from that of Opalg and I wish to share it here...

Let $$f(x)=x^3+(x+1)^3+(x+2)^3+(x+3)^3+(x+4)^3+(x+5)^3+(x+6)^3+(x+7)^3=8x^3+84x^2+420x+784=y^3$$

Also

$$(2x+7)^3=8x^3+84x^2+294x+343$$

$$(2x+10)^3=8x^3+120x^2+600x+1000$$

If $x\ge 0$, we can say that $$(2x+7)^3<f(x)<(2x+10)^3$$.

This implies $$ (2x+7)<y<(2x+10)$$ and therefore $y$ is $2x+8$ or $2x+9$. But neither of the equations

$$f(x)-(2x+8)^3=-12x^2+36x+272=0$$

$$f(x)-(2x+9)^3=-24x^2-66x+55=0$$

have integer roots.

So we can conclude that there is no solution with $x\ge 0$.

Notice also that if we replace $x$ by $-x-7$, we end up having $$f(-x-7)=-f(x)$$. This means $(x, y)$ is a solution iff $(-x-7, -y)$ is a solution. Therefore, there are no solution with $x\le -7$. Therefore, for $(x, y)$ to be a solution, we must have $-6 \le x \le -1$.

Checking all possibilities out lead us to the only 4 solutions, and they are $(-2, 6)$, $(-3, 4)$, $(-4, -4)$ and $(-5, -6)$.
 
Last edited:
anemone said:
Let $$f(x)=x^3+(x+1)^3+(x+2)^3+(x+3)^3+(x+4)^3+(x+5)^3+(x+6)^3+(x+7)^3=8x^3+84x^2+420x+784=y^3$$

$\vdots$

Checking all possibilities out lead us to the only 4 solutions, and they are $(-2, 6)$, $(-3, 4)$, $(-4, -4)$ and $(-5, -6)$.
Notice that if you put $x=-3$ in the formula for $f(x)$ then it becomes $(-3)^3 + (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3$. All the negative terms cancel with positive terms and you are just left with $4^3$.

If you put $x=-2$ then you get $f(-2) = (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3$. Again, the negative terms cancel with some of the positive ones, and the remaining terms illustrate the fact that $3^3 + 4^3 + 5^3 = 6^3.$

The other two solutions for $x$ work in a similar way, except that in these cases the negative terms outweigh the positive ones.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top