Solutions to x^3+...+y^3=y^3 in Integers

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers
Click For Summary

Discussion Overview

The discussion revolves around finding all integer solutions to the equation $$x^3+(x+1)^3+(x+2)^3+\cdots+(x+7)^3=y^3$$. Participants explore various methods and approaches to derive solutions, including algebraic manipulations and reasoning about the properties of the functions involved.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a factorization of the sum of cubes and derives conditions on $z$ and $y$, concluding that $z$ must be an odd integer less than 20, leading to specific solutions.
  • Another participant introduces a different method involving bounding $f(x)$ between two cubic expressions, concluding that there are no solutions for $x \ge 0$ and restricting $x$ to the range $-6 \le x \le -1$.
  • Further elaboration on the behavior of $f(x)$ at specific integer values of $x$ is provided, illustrating how certain terms cancel out, leading to the identified solutions.
  • Multiple participants confirm the same four solutions: $(-2, 6)$, $(-3, 4)$, $(-4, -4)$, and $(-5, -6)$, but the methods to arrive at these solutions differ.

Areas of Agreement / Disagreement

While participants agree on the four solutions identified, there is no consensus on the methods used to derive these solutions, and different approaches are presented without resolution on which is superior.

Contextual Notes

Participants note that the solutions depend on specific algebraic manipulations and assumptions about the nature of $x$ and $y$. The discussion highlights the complexity of the problem and the need for careful consideration of integer properties.

Who May Find This Useful

Readers interested in number theory, algebraic equations, and integer solutions may find the various approaches and insights shared in this discussion valuable.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all solutions in integers of the equation

$$x^3+(x+1)^3+(x+2)^3+\cdots+(x+7)^3=y^3$$
 
Mathematics news on Phys.org
[sp]$x^3+(x+1)^3+(x+2)^3+\cdots+(x+7)^3=8x^3 + 84x^2 + 420x + 784 = (2x+7)(4x^2 + 28x + 112) = z(z^2+63)$, where $z=2x+7$. Thus $z$ is an odd integer and $z(z^2+63) = y^3$. If $(y,z)$ is a solution then so is $(-y,-z)$, so concentrate on the case where $y$ and $z$ are both positive. Since $y^3 = z^3 + 63z$ it is clear that $y>z$ and so $y\geqslant z+1$. Therefore $z^3+63z \geqslant (z+1)^3 = z^3 + 3z^2 + 3z + 1$, so that $3z^2 -60z + 1 \leqslant 0.$ Writing this as $3z(z-20) + 1 \leqslant 0$, you see that $z<20$. When you check the odd numbers from $1$ to $19$, you find that the only solutions are when $z=1$ and $z=3$. Thus the solutions (including the negative ones) for $(y,z)$ are $(\pm4,\pm1)$ and $(\pm6,\pm3)$; and the solutions for $(x,y)$ are $(-5,-6),\: (-4,-4),\: (-3,4),\:(-2,6).$[/sp]
 
Last edited:
Thanks Opalg for participating and you have gotten all 4 correct solutions!

Here is the method I saw somewhere that is different from that of Opalg and I wish to share it here...

Let $$f(x)=x^3+(x+1)^3+(x+2)^3+(x+3)^3+(x+4)^3+(x+5)^3+(x+6)^3+(x+7)^3=8x^3+84x^2+420x+784=y^3$$

Also

$$(2x+7)^3=8x^3+84x^2+294x+343$$

$$(2x+10)^3=8x^3+120x^2+600x+1000$$

If $x\ge 0$, we can say that $$(2x+7)^3<f(x)<(2x+10)^3$$.

This implies $$ (2x+7)<y<(2x+10)$$ and therefore $y$ is $2x+8$ or $2x+9$. But neither of the equations

$$f(x)-(2x+8)^3=-12x^2+36x+272=0$$

$$f(x)-(2x+9)^3=-24x^2-66x+55=0$$

have integer roots.

So we can conclude that there is no solution with $x\ge 0$.

Notice also that if we replace $x$ by $-x-7$, we end up having $$f(-x-7)=-f(x)$$. This means $(x, y)$ is a solution iff $(-x-7, -y)$ is a solution. Therefore, there are no solution with $x\le -7$. Therefore, for $(x, y)$ to be a solution, we must have $-6 \le x \le -1$.

Checking all possibilities out lead us to the only 4 solutions, and they are $(-2, 6)$, $(-3, 4)$, $(-4, -4)$ and $(-5, -6)$.
 
Last edited:
anemone said:
Let $$f(x)=x^3+(x+1)^3+(x+2)^3+(x+3)^3+(x+4)^3+(x+5)^3+(x+6)^3+(x+7)^3=8x^3+84x^2+420x+784=y^3$$

$\vdots$

Checking all possibilities out lead us to the only 4 solutions, and they are $(-2, 6)$, $(-3, 4)$, $(-4, -4)$ and $(-5, -6)$.
Notice that if you put $x=-3$ in the formula for $f(x)$ then it becomes $(-3)^3 + (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3$. All the negative terms cancel with positive terms and you are just left with $4^3$.

If you put $x=-2$ then you get $f(-2) = (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3$. Again, the negative terms cancel with some of the positive ones, and the remaining terms illustrate the fact that $3^3 + 4^3 + 5^3 = 6^3.$

The other two solutions for $x$ work in a similar way, except that in these cases the negative terms outweigh the positive ones.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K