Solutions to x^3+...+y^3=y^3 in Integers

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers
Click For Summary
SUMMARY

The integer solutions to the equation $$x^3+(x+1)^3+(x+2)^3+\cdots+(x+7)^3=y^3$$ are found to be $(-2, 6)$, $(-3, 4)$, $(-4, -4)$, and $(-5, -6)$. The equation simplifies to $8x^3 + 84x^2 + 420x + 784 = y^3$, leading to the conclusion that $z=2x+7$ must be an odd integer. By analyzing the bounds of $y$ in relation to $z$, it is established that $z$ can only take the values 1 and 3, yielding the aforementioned solutions. The method confirms that there are no solutions for $x \geq 0$ or $x \leq -7$.

PREREQUISITES
  • Understanding of cubic equations and integer solutions
  • Familiarity with polynomial factorization techniques
  • Knowledge of inequalities and their applications in mathematical proofs
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore integer solutions to polynomial equations
  • Study the properties of cubic functions and their graphs
  • Investigate the implications of symmetry in mathematical equations
  • Learn about the role of bounds in proving the existence of solutions
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in number theory and polynomial equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all solutions in integers of the equation

$$x^3+(x+1)^3+(x+2)^3+\cdots+(x+7)^3=y^3$$
 
Mathematics news on Phys.org
[sp]$x^3+(x+1)^3+(x+2)^3+\cdots+(x+7)^3=8x^3 + 84x^2 + 420x + 784 = (2x+7)(4x^2 + 28x + 112) = z(z^2+63)$, where $z=2x+7$. Thus $z$ is an odd integer and $z(z^2+63) = y^3$. If $(y,z)$ is a solution then so is $(-y,-z)$, so concentrate on the case where $y$ and $z$ are both positive. Since $y^3 = z^3 + 63z$ it is clear that $y>z$ and so $y\geqslant z+1$. Therefore $z^3+63z \geqslant (z+1)^3 = z^3 + 3z^2 + 3z + 1$, so that $3z^2 -60z + 1 \leqslant 0.$ Writing this as $3z(z-20) + 1 \leqslant 0$, you see that $z<20$. When you check the odd numbers from $1$ to $19$, you find that the only solutions are when $z=1$ and $z=3$. Thus the solutions (including the negative ones) for $(y,z)$ are $(\pm4,\pm1)$ and $(\pm6,\pm3)$; and the solutions for $(x,y)$ are $(-5,-6),\: (-4,-4),\: (-3,4),\:(-2,6).$[/sp]
 
Last edited:
Thanks Opalg for participating and you have gotten all 4 correct solutions!

Here is the method I saw somewhere that is different from that of Opalg and I wish to share it here...

Let $$f(x)=x^3+(x+1)^3+(x+2)^3+(x+3)^3+(x+4)^3+(x+5)^3+(x+6)^3+(x+7)^3=8x^3+84x^2+420x+784=y^3$$

Also

$$(2x+7)^3=8x^3+84x^2+294x+343$$

$$(2x+10)^3=8x^3+120x^2+600x+1000$$

If $x\ge 0$, we can say that $$(2x+7)^3<f(x)<(2x+10)^3$$.

This implies $$ (2x+7)<y<(2x+10)$$ and therefore $y$ is $2x+8$ or $2x+9$. But neither of the equations

$$f(x)-(2x+8)^3=-12x^2+36x+272=0$$

$$f(x)-(2x+9)^3=-24x^2-66x+55=0$$

have integer roots.

So we can conclude that there is no solution with $x\ge 0$.

Notice also that if we replace $x$ by $-x-7$, we end up having $$f(-x-7)=-f(x)$$. This means $(x, y)$ is a solution iff $(-x-7, -y)$ is a solution. Therefore, there are no solution with $x\le -7$. Therefore, for $(x, y)$ to be a solution, we must have $-6 \le x \le -1$.

Checking all possibilities out lead us to the only 4 solutions, and they are $(-2, 6)$, $(-3, 4)$, $(-4, -4)$ and $(-5, -6)$.
 
Last edited:
anemone said:
Let $$f(x)=x^3+(x+1)^3+(x+2)^3+(x+3)^3+(x+4)^3+(x+5)^3+(x+6)^3+(x+7)^3=8x^3+84x^2+420x+784=y^3$$

$\vdots$

Checking all possibilities out lead us to the only 4 solutions, and they are $(-2, 6)$, $(-3, 4)$, $(-4, -4)$ and $(-5, -6)$.
Notice that if you put $x=-3$ in the formula for $f(x)$ then it becomes $(-3)^3 + (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3$. All the negative terms cancel with positive terms and you are just left with $4^3$.

If you put $x=-2$ then you get $f(-2) = (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3$. Again, the negative terms cancel with some of the positive ones, and the remaining terms illustrate the fact that $3^3 + 4^3 + 5^3 = 6^3.$

The other two solutions for $x$ work in a similar way, except that in these cases the negative terms outweigh the positive ones.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K