Solve ## 25x\equiv 15\pmod {29} ##.

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The linear congruence 25x≡15 (mod 29) has a unique solution since gcd(25, 29) equals 1. The solution process involves transforming the equation to -4x≡15 (mod 29) and then simplifying to -28x≡105, which reduces to x≡18 (mod 29). Additionally, using Bézout's Identity, it is shown that 1 can be expressed in terms of 25 and 29, leading to the conclusion that the modular inverse of 25 is 7. Thus, the final solution confirms that x≡18 (mod 29) is valid and can be derived through different methods. The discussion emphasizes the reliability of the approach for coprime numbers.
Math100
Messages
813
Reaction score
229
Homework Statement
Solve the following linear congruence:
## 25x\equiv 15\pmod {29} ##.
Relevant Equations
None.
Consider the linear congruence ## 25x\equiv 15\pmod {29} ##.
By corollary, if ## gcd(a, n)=1 ##, then the linear congruence ## ax\equiv b\pmod {n} ## has
a unique solution modulo ## n ##.
Observe that ## gcd(25, 29)=1 ##.
This means that the linear congruence ## 25x\equiv 15\pmod {29} ## has a
unique solution modulo ## n ##.
Thus
\begin{align*}
&25x\equiv 15\pmod {29}\\
&-4x\equiv 15\pmod {29}\\
&-28x\equiv 105\equiv 18\pmod {29}.\\
\end{align*}
Therefore, ## x\equiv 18\pmod {29} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Solve the following linear congruence:
## 25x\equiv 15\pmod {29} ##.
Relevant Equations:: None.

Consider the linear congruence ## 25x\equiv 15\pmod {29} ##.
By corollary, if ## gcd(a, n)=1 ##, then the linear congruence ## ax\equiv b\pmod {n} ## has
a unique solution modulo ## n ##.
Observe that ## gcd(25, 29)=1 ##.
This means that the linear congruence ## 25x\equiv 15\pmod {29} ## has a
unique solution modulo ## n ##.
Thus
\begin{align*}
&25x\equiv 15\pmod {29}\\
&-4x\equiv 15\pmod {29}\\
&-28x\equiv 105\equiv 18\pmod {29}.\\
\end{align*}
Therefore, ## x\equiv 18\pmod {29} ##.
Right.

The standard procedure uses the Euclidean division. Given any two numbers ##a,b## there are numbers ##x,y## such that ##\operatorname{gcd}(a,b)=xa+yb.## (Bézout's Identity)

\begin{align*}
29 &= 1\cdot 25 +4\\
25&= 6\cdot 4 +1\\
4&= 4\cdot 1 + 0
\end{align*}
So ##1=25 -6\cdot 4=25-6\cdot (29-1\cdot 25)= 25- 6\cdot 29 +6\cdot 25=-6\cdot 29 + 7\cdot 25.## This means modulo ##29## that ##1 \equiv 7\cdot 25 \pmod {29}## or ##25^{-1}\equiv 7\pmod {29}.##

Therefore ##x\equiv 25^{-1} \cdot 15 \equiv7\cdot 15 \equiv 105 \equiv 18 \pmod{29}.##

This may look longer than what you did, however, it can be programmed and works always. At least for coprime numbers ##a,b.## Otherwise, we do not have an inverse.
 
Last edited:
  • Informative
  • Like
Likes Delta2 and Math100
Back
Top