MHB Solve Binominal Form (4x+3)^n | Binomial Coefficients

AI Thread Summary
The discussion focuses on the binomial expansion of (4x + 3)^n, specifically examining the coefficients of the x^3 and x^4 terms, which are equal for n = 6. The coefficients are derived from the binomial theorem and equated, leading to the equation 3 {n choose 3} = 4 {n choose 4}. Solving this equation reveals that n must equal 6. The coefficients for both terms at n = 6 are confirmed to be 34560.
Alexstrasuz1
Messages
20
Reaction score
0
In solved binominal form (4x+3)^n has two members x^4 and x^3 whose binomial coefficients are equal.
I'm kinda good in solving binomial coefficient, but I never stumbled to something like this
 
Mathematics news on Phys.org
Alexstrasuz said:
In solved binominal form (4x+3)^n has two members x^4 and x^3 whose binomial coefficients are equal.
I'm kinda good in solving binomial coefficient, but I never stumbled to something like this

Hello,

take Pascal's triangle of binomial coefficient and look (for n > 4)
View attachment 3393

for those neighbouring coefficients which are in the relation 3 to 4.

The first hit is for n = 6.

Expanding $$(4x+3)^6$$ you'll find that the coefficients in question are 34560.
 

Attachments

  • nauspasc3eck.jpg
    nauspasc3eck.jpg
    7.7 KB · Views: 115
Alexstrasuz said:
In solved binominal form (4x+3)^n has two members x^4 and x^3 whose binomial coefficients are equal.
I'm kinda good in solving binomial coefficient, but I never stumbled to something like this
The binomial expansion of
[math](4x + 3)^n = \sum_{i = 0}^n {n \choose i} (4x)^i \cdot 3^{n- i}[/math]

So the coefficient of the [math]x^3[/math] term (which implies i = 3) is
[math]{n \choose 3}4^3 \cdot 3^{n - 3}[/math]

and the coefficient of the [math]x^4[/math] term (which implies i + 1 = 3 + 1) is
[math]{n \choose 4} 4^4 \cdot 3^{n - 4}[/math]

Equating these:
[math]{n \choose 3}4^3 \cdot 3^{n - 3} = {n \choose 4} 4^4 \cdot 3^{n - 4}[/math]

[math]3 {n \choose 3} = 4 {n \choose 4}[/math]

[math]3 \cdot \frac{n!}{3! (n - 3)!} = 4 \cdot \frac{n!}{4! (n - 4)!}[/math]

[math]3 \cdot \frac{1}{n - 3} = 1[/math]

[math]3 = n - 3[/math]

[math]n = 6[/math]

And you can now calculate that the coefficient is the same as earboth told you, 34560.

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top