Solve Complex Numbers: $z$ | Arg & Modulus Equations

Click For Summary

Discussion Overview

The discussion revolves around solving for the complex number \( z \) given the conditions involving the argument and modulus of complex expressions. Participants explore the implications of these conditions geometrically and algebraically, focusing on the relationships between points in the complex plane.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants express difficulty in simplifying the equations after substituting \( z = x + iy \) and suggest looking for alternative methods.
  • It is noted that the condition \( |z - 3 + i| = 3 \) indicates that \( z \) lies on a circle centered at \( 3 - i \) with a radius of 3.
  • Participants discuss the transformation of the argument condition into a geometric interpretation involving vectors from \( z \) to the points \( 2 + i \) and \( 4 + 3i \), leading to the requirement that \( z \) lies on a specific circle.
  • There is a suggestion to derive the equations of the circles and find their intersection points as potential solutions for \( z \).
  • One participant proposes that the relevant arc connecting the points \( 2 + i \) and \( 4 + 3i \) is the major arc, excluding the endpoints, due to the undefined nature of \( \arg(0) \).
  • Another participant agrees with this interpretation and acknowledges a previous oversight regarding the minor arc.

Areas of Agreement / Disagreement

Participants generally agree on the geometric interpretations of the conditions but have differing views on the specifics of the arcs involved and the implications for the solutions. The discussion remains unresolved regarding the exact nature of the solutions and the approach to take.

Contextual Notes

The discussion includes assumptions about the geometric properties of circles and angles in the complex plane, which may not be universally applicable without further clarification. The dependence on specific definitions of argument and modulus in complex analysis is also noted.

DrunkenOldFool
Messages
20
Reaction score
0
Solve for complex number, $z$:\[\text{arg}\left( \frac{3z-6-3i}{2z-8-6i}\right)=\frac{\pi}{4}\]and \[|z-3+i|=3\]The problem I am facing is that when I substitute $z=x+iy$, the equations become extremely complicated. There has to be another tricky method which I am not able to figure out.
 
Physics news on Phys.org
DrunkenOldFool said:
Solve for complex number, $z$:\[\text{arg}\left( \frac{3z-6-3i}{2z-8-6i}\right)=\frac{\pi}{4}\]and \[|z-3+i|=3\]The problem I am facing is that when I substitute $z=x+iy$, the equations become extremely complicated. There has to be another tricky method which I am not able to figure out.

The following may help:

The second condition means that \(z\) is a point on a circle of radius 3 centred at \(3-i\)

Also \(\arg(u/v)=(\arg(u)-\arg(v)) \mod 2\pi\).

CB
 
Last edited:
Notice first that $\arg\left( \dfrac{3z-6-3i}{2z-8-6i}\right) = \arg\left( \dfrac32\,\dfrac{z-2-i}{z-4-3i}\right) = \arg\left( \dfrac{z-2-i}{z-4-3i}\right)$ (because multiplying a complex number by a positive real number does not alter its arg).

Next, $\arg\left( \dfrac{z-2-i}{z-4-3i}\right) = \arg\bigl(z-(2+i)\bigr) - \arg\bigl(z-(4+3i)\bigr)$. Now $z-(2+i)$ is the vector from $z$ to $2+i$, and $z-(4+3i)$ is the vector from $z$ to $4+3i$ (see the dashed lines in the picture below). We want the angle between those two vectors to be $\pi/4$.

If you recall your euclidean geometry (theorems about angles in the same segment, and the angle at the centre being twice the angle at the circumference), you will see that this requires $z$ to lie on a circle through the two black dots in the picture (the points $2+i$ and $4+3i$). The centre of the circle has to lie on the perpendicular bisector of those two points, and the two points have to be in perpendicular directions from the centre. That requires the centre to be at the point $4+i$ (the green dot), which conveniently shares the same real or imaginary part with each black dot.

Thus $z$ has to lie on the green circle. As CaptainBlack has pointed out, $z$ also has to lie on the red circle centred at $3-i$ with radius 3. At this stage, I would substitute $z=x+iy$, and write the equations of the circles. Solve for $x$ and $y$ (start by subtracting one circle equation from the other, to get a linear relation between $x$ and $y$) and you will get two solutions for $z$, namely the points where the two circles meet.

 

Attachments

  • arg.png
    arg.png
    7.5 KB · Views: 116
Opalg said:
Notice first that $\arg\left( \dfrac{3z-6-3i}{2z-8-6i}\right) = \arg\left( \dfrac32\,\dfrac{z-2-i}{z-4-3i}\right) = \arg\left( \dfrac{z-2-i}{z-4-3i}\right)$ (because multiplying a complex number by a positive real number does not alter its arg).

Next, $\arg\left( \dfrac{z-2-i}{z-4-3i}\right) = \arg\bigl(z-(2+i)\bigr) - \arg\bigl(z-(4+3i)\bigr)$. Now $z-(2+i)$ is the vector from $z$ to $2+i$, and $z-(4+3i)$ is the vector from $z$ to $4+3i$ (see the dashed lines in the picture below). We want the angle between those two vectors to be $\pi/4$.

If you recall your euclidean geometry (theorems about angles in the same segment, and the angle at the centre being twice the angle at the circumference), you will see that this requires $z$ to lie on a circle through the two black dots in the picture (the points $2+i$ and $4+3i$). The centre of the circle has to lie on the perpendicular bisector of those two points, and the two points have to be in perpendicular directions from the centre. That requires the centre to be at the point $4+i$ (the green dot), which conveniently shares the same real or imaginary part with each black dot.

Thus $z$ has to lie on the green circle. As CaptainBlack has pointed out, $z$ also has to lie on the red circle centred at $3-i$ with radius 3. At this stage, I would substitute $z=x+iy$, and write the equations of the circles. Solve for $x$ and $y$ (start by subtracting one circle equation from the other, to get a linear relation between $x$ and $y$) and you will get two solutions for $z$, namely the points where the two circles meet.

https://www.physicsforums.com/attachments/459​
I think it will be the major arc joining but not including z = 2 + i and z = 4 + 3i rather than the whole circle (the minor arc will be obtained for pi/4 + pi). The end points of the arc are not included because arg(0) is not defined.
 
Mr Fantastic said:
I think it will be the major arc joining but not including z = 2 + i and z = 4 + 3i rather than the whole circle (the minor arc will be obtained for pi/4 + pi). The end points of the arc are not included because arg(0) is not defined.
Absolutely correct. (I thought that I had checked what happens on the minor arc, but I overlooked a minus sign.)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K