A Solve DE: m, h, E, Z, t, k, a (1-4)

OneByBane
Messages
1
Reaction score
0
I am currently trying to solve this differential equation:

r2/F(r) d2F(r)/dr2 + 2mr2/h2(E + Zt2/kr) - a2 = 0

Wher m, h, E, Z, t and k are other variables and 'a' can have values 1, 2, 3, 4... (Whole numbers)

I have come across this while solving a problem in physics and have no clue if this even has a solution.
Any help will be appreciated greatly.
 
Physics news on Phys.org
If your equation is given by ( please please please learn to tex )
$$ \frac{r^2}{f(r)} \frac{d^2 f(r)}{dr^2} + \frac{2mr^2}{h^2}\left(E + \frac{zt^2}{kr}\right) -a^2 = 0 $$
Then you can rewrite to
$$ \left( \frac{d^2}{dr^2} + \frac{2mE}{h^2} + \frac{2mzt^2}{h^2 kr} - \frac{a^2}{r^2} \right) f(r) = 0 $$
Which is pretty close to the Whittaker equation ( https://en.wikipedia.org/wiki/Whittaker_function ).
 
  • Like
Likes Ssnow
This is a second order differential equation, you can rewrite it as:

##\frac{d^2}{dr^2}F(r)+ \left[\frac{2m}{h^2}\left(E-\frac{h^2a^2}{2mr^2} + \frac{Zt^2}{kr}\right)\right]F(r) =0##

calling ##a(r)=\frac{2m}{h^2}\left(E-\frac{h^2a^2}{2mr^2} + \frac{Zt^2}{kr}\right)## we have that

##\frac{d^2}{dr^2}F(r)+ a(r)\cdot F(r) =0##

to solve this DE you must find a particular solution in order to find the general ...
 
The solutions to this equation are called Coulomb wave functions. You can also write the solution in terms of confluent hypergeometric functions.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top