- #1
bancux
- 12
- 0
Homework Statement
I need to work on a differential equation.
[tex]
\frac{d^2T}{dx^2} - (m+n\ sin(kx))\ T = 0
[/tex]
Homework Equations
Is my work correct?
The Attempt at a Solution
[tex]
\frac{d^2T}{dx^2} - (m+n\ sin(kx))\ T = 0
[/tex]
[tex]
\frac{d}{dx}\left(\frac{dT}{dx} \right) = (m+n\ sin(kx))\ T
[/tex]
[tex]
\int \frac{d}{T}\left(\frac{dT}{dx} \right) = \int (m+n\ sin(kx)) \ dx
[/tex]
[tex]
\frac{1}{T}\left(\frac{dT}{dx} \right) = mx-\frac{n}{k}\ cos(kx)+C_1
[/tex]
[tex]
\int \frac{dT}{T} = \int (mx-\frac{n}{k}\ cos(kx)+C_1)\ dx
[/tex]
[tex]
ln T = \frac{m}{2}x^2-\frac{n}{k^2}sin(kx)+C_1x+C_2
[/tex]
[tex]
T = e^{\frac{m}{2}x^2-\frac{n}{k^2}sin(kx)+C_1x}\ e^{C_2}
[/tex]
[tex]
T = e^{\frac{m}{2}x^2-\frac{n}{k^2}sin(kx)+C_1x}\ C_2
[/tex]