MHB Solve Exercise with Modulo: Is this Correct?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Exercise
Click For Summary
The discussion revolves around proving that if \( a^p \equiv b^p \pmod{p} \) for a prime \( p \) not dividing \( a \) or \( b \), then it follows that \( a^p \equiv b^p \pmod{p^2} \). The initial approach involves expanding \( (b + kp)^p \) using the binomial theorem and showing that the resulting terms contain \( p^2 \) as a factor. Participants confirm the necessity of proving that certain expressions are integers, which is supported by properties of binomial coefficients. The consensus is that the proof is valid, as the terms involving \( p \) ensure divisibility by \( p^2 \). The discussion concludes with an affirmation of the correctness of the approach.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I have the following exercise:

If $p$ is prime, $p \nmid a$, $p \nmid b$, prove that $$a^p \equiv b^p \pmod p \Rightarrow a^p \equiv b^p \pmod {p^2}$$

My idea is the following:
$$ a^p \equiv b^p \pmod p $$
$$ a^p \equiv a \pmod p $$
$$ b^p \equiv b \pmod p $$

$$ a \equiv b \pmod p \Rightarrow a=b+kp, k \in \mathbb{Z}$$

$$ a^p=(b+kp)^p=\sum_{m=0}^{p} \binom{p}{m} (kp)^mb^{p-m}=\binom{p}{0}b^p+\binom{p}{1}(kp)b^{p-1}+ \dots + \binom{p}{p}(kp)^p= \\ b^p+kp^2b^{p-1}+ \frac{1}{2}(p-1)p^3b^{p-2}k^2+\dots + k^pp^p$$

$$ p^2 \mid kp^2b^{p-1}+ \frac{1}{2}(p-1)p^3b^{p-2}k^2+\dots + k^pp^p
\Rightarrow p^2 \mid a^p-b^p $$

Is this correct?? (Wondering)
 
Physics news on Phys.org
That looks correct.
 
Deveno said:
That looks correct.

Do we not have to prove that $$kb^{p-1}+ \frac{1}{2}(p-1)pb^{p-2}k^2+\dots + k^pp^{p-2} \in \mathbb{Z} $$?? (Wondering)
 
mathmari said:
Do we not have to prove that $$kb^{p-1}+ \frac{1}{2}(p-1)pb^{p-2}k^2+\dots + k^pp^{p-2} \in \mathbb{Z} $$?? (Wondering)

Yep. We do.
Can you? (Wondering)
 
I like Serena said:
Yep. We do.
Can you? (Wondering)

Consider that each of the binomial coefficients is of the form:
$$\binom p k = \frac{p \cdot (p-1) \cdot ... \cdot (p-k+1)}{1\cdot 2 \cdot ... \cdot k}$$
It is given that this is an integer.
So each of those factors in the denominator come back in the numerator somehow.
Can any of them contain a factor that divides $p$? (Wondering)
 
One can prove that:

$\displaystyle \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

which furnishes an easy inductive proof that for all $0 \leq k \leq n$ that $\displaystyle \binom{n}{k}$ is an integer, given:

$\displaystyle \binom{n}{0} = \binom{n}{n} = 1$, for all $n \in \Bbb Z^+$.

Then the only fact we need in the expansion of $(b + kp)^p$ is that $\displaystyle p|\binom{p}{1}$

since $p^2$ occurs in all the other terms of the expansion, no matter what the coefficient is.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K