Solve integral by finding Fourier series of complex function

  • Thread starter Thread starter psie
  • Start date Start date
  • Tags Tags
    Fourier analysis
Click For Summary

Homework Help Overview

The discussion revolves around solving an integral by finding the Fourier series of a complex-valued function. The original poster expresses difficulty in starting the problem, particularly with the integral for the coefficient of the function defined as $$u(x)=\frac{r-e^{-ix}}{r^2-2r\cos x+1}.$$

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the use of Fourier series to solve the integral, with one suggesting a specific form for the function to simplify the process. Others discuss the relationship between the Fourier coefficients of different functions and the integral in question.

Discussion Status

There is an ongoing exploration of different approaches to obtain the Fourier coefficients and their relation to the integral. Some participants have provided insights into how to derive the coefficients and suggested using Parseval's formula, but no consensus has been reached on a single method or solution.

Contextual Notes

Participants note that the function involves complex values and that the original poster prefers to use Fourier series rather than alternative methods. There is also mention of the condition that ##r>1## for the function being discussed.

psie
Messages
315
Reaction score
40
Homework Statement
Expand the function ##u(x)=\frac1{r-e^{ix}},## where ##r>1##, in a Fourier series and use this to compute the integral ##\int _0^{2\pi }\frac{dx}{1-2r\cos x+r^2}##.
Relevant Equations
E.g. maybe the formula for the complex Fourier coefficients ##c_n=\frac1{2\pi}\int_{-\pi}^\pi u(x)e^{-inx} dx##. Maybe Parseval's formula?
I've mostly worked with real-valued functions, but this seems to be a complex-valued function and the integral for the coefficient doesn't seem that nice, especially when I rewrite the function as $$u(x)=\frac{r-e^{-ix}}{r^2-2r\cos x+1}.$$ I'm stuck on where to even start. Any ideas? I prefer to solve this via Fourier series if this is possible, and not using some other trick.
 
Physics news on Phys.org
Try the function

\begin{align*}
v(x) = A + u(x) e^{ix}
\end{align*}

where ##A## is an appropriately chosen constant. You only need the real part of the function.
 
Last edited:
I solved it using Fourier series. It's pretty straightforward actually. The function is $$u(x)=\frac1{r-e^{ix}}=\frac1{r}\frac{1}{1-\frac{e^{ix}}{r}},$$ where ##r>1##. You see, this is the sum of a geometric series. Writing that out you will obtain the complex Fourier series and thus the coefficients. Then to solve the integral, you simply apply Parseval's formula. Bingo!
 
Yes, that is how you obtain the Fourier coefficients. I was thinking

\begin{align*}
c_0 = \frac{1}{2 \pi} \int_{-\pi}^\pi \dfrac{r - \cos x}{r^2 - 2 r \cos x + 1} dx
\end{align*}

so you can't know the value of the integral you are after (##\int_{-\pi}^\pi \dfrac{1}{r^2 - 2 r \cos x + 1} dx##) from the value of ##c_0## of ##u(x)##.

However, you can get the value of the integral you are after from the value of the Fourier coefficient, ##c_0##, of ##v(x) = 1/2 + u(x) e^{ix}##.

Or, as you say, you can use Parseval's on ##u(x)##.
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K