Solve integral by finding Fourier series of complex function

  • Thread starter Thread starter psie
  • Start date Start date
  • Tags Tags
    Fourier analysis
Click For Summary
The discussion focuses on solving an integral involving a complex-valued function using Fourier series. The function in question is rewritten as u(x) = (r - e^(-ix)) / (r^2 - 2r cos x + 1), and the user expresses difficulty in starting the solution. A suggested approach involves defining a new function v(x) = A + u(x)e^(ix), where A is a constant, and emphasizes obtaining the real part of the function. The solution involves recognizing u(x) as a geometric series, leading to the derivation of Fourier coefficients and applying Parseval's formula to solve the integral. Ultimately, the integral can be evaluated using the Fourier coefficient c_0 of the modified function v(x).
psie
Messages
315
Reaction score
40
Homework Statement
Expand the function ##u(x)=\frac1{r-e^{ix}},## where ##r>1##, in a Fourier series and use this to compute the integral ##\int _0^{2\pi }\frac{dx}{1-2r\cos x+r^2}##.
Relevant Equations
E.g. maybe the formula for the complex Fourier coefficients ##c_n=\frac1{2\pi}\int_{-\pi}^\pi u(x)e^{-inx} dx##. Maybe Parseval's formula?
I've mostly worked with real-valued functions, but this seems to be a complex-valued function and the integral for the coefficient doesn't seem that nice, especially when I rewrite the function as $$u(x)=\frac{r-e^{-ix}}{r^2-2r\cos x+1}.$$ I'm stuck on where to even start. Any ideas? I prefer to solve this via Fourier series if this is possible, and not using some other trick.
 
Physics news on Phys.org
Try the function

\begin{align*}
v(x) = A + u(x) e^{ix}
\end{align*}

where ##A## is an appropriately chosen constant. You only need the real part of the function.
 
Last edited:
I solved it using Fourier series. It's pretty straightforward actually. The function is $$u(x)=\frac1{r-e^{ix}}=\frac1{r}\frac{1}{1-\frac{e^{ix}}{r}},$$ where ##r>1##. You see, this is the sum of a geometric series. Writing that out you will obtain the complex Fourier series and thus the coefficients. Then to solve the integral, you simply apply Parseval's formula. Bingo!
 
Yes, that is how you obtain the Fourier coefficients. I was thinking

\begin{align*}
c_0 = \frac{1}{2 \pi} \int_{-\pi}^\pi \dfrac{r - \cos x}{r^2 - 2 r \cos x + 1} dx
\end{align*}

so you can't know the value of the integral you are after (##\int_{-\pi}^\pi \dfrac{1}{r^2 - 2 r \cos x + 1} dx##) from the value of ##c_0## of ##u(x)##.

However, you can get the value of the integral you are after from the value of the Fourier coefficient, ##c_0##, of ##v(x) = 1/2 + u(x) e^{ix}##.

Or, as you say, you can use Parseval's on ##u(x)##.
 
Last edited:
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...

Similar threads