Solve integral by finding Fourier series of complex function

  • Thread starter Thread starter psie
  • Start date Start date
  • Tags Tags
    Fourier analysis
Click For Summary
SUMMARY

This discussion focuses on solving integrals by finding the Fourier series of the complex function $$u(x)=\frac{r-e^{-ix}}{r^2-2r\cos x+1}$$, where $$r>1$$. The approach involves rewriting the function and utilizing the geometric series to derive the complex Fourier series and its coefficients. The integral can be evaluated using Parseval's formula, specifically through the Fourier coefficient $$c_0$$ of the function $$v(x) = \frac{1}{2} + u(x) e^{ix}$$. This method provides a clear pathway to obtaining the desired integral value.

PREREQUISITES
  • Understanding of complex-valued functions
  • Familiarity with Fourier series and their coefficients
  • Knowledge of Parseval's theorem
  • Basic skills in manipulating geometric series
NEXT STEPS
  • Study the derivation of Fourier coefficients for complex functions
  • Learn about Parseval's theorem and its applications in integral evaluation
  • Explore geometric series and their convergence criteria
  • Practice solving integrals using Fourier series with various functions
USEFUL FOR

Mathematicians, physicists, and engineers interested in complex analysis, integral calculus, and Fourier analysis will benefit from this discussion.

psie
Messages
315
Reaction score
40
Homework Statement
Expand the function ##u(x)=\frac1{r-e^{ix}},## where ##r>1##, in a Fourier series and use this to compute the integral ##\int _0^{2\pi }\frac{dx}{1-2r\cos x+r^2}##.
Relevant Equations
E.g. maybe the formula for the complex Fourier coefficients ##c_n=\frac1{2\pi}\int_{-\pi}^\pi u(x)e^{-inx} dx##. Maybe Parseval's formula?
I've mostly worked with real-valued functions, but this seems to be a complex-valued function and the integral for the coefficient doesn't seem that nice, especially when I rewrite the function as $$u(x)=\frac{r-e^{-ix}}{r^2-2r\cos x+1}.$$ I'm stuck on where to even start. Any ideas? I prefer to solve this via Fourier series if this is possible, and not using some other trick.
 
Physics news on Phys.org
Try the function

\begin{align*}
v(x) = A + u(x) e^{ix}
\end{align*}

where ##A## is an appropriately chosen constant. You only need the real part of the function.
 
Last edited:
I solved it using Fourier series. It's pretty straightforward actually. The function is $$u(x)=\frac1{r-e^{ix}}=\frac1{r}\frac{1}{1-\frac{e^{ix}}{r}},$$ where ##r>1##. You see, this is the sum of a geometric series. Writing that out you will obtain the complex Fourier series and thus the coefficients. Then to solve the integral, you simply apply Parseval's formula. Bingo!
 
Yes, that is how you obtain the Fourier coefficients. I was thinking

\begin{align*}
c_0 = \frac{1}{2 \pi} \int_{-\pi}^\pi \dfrac{r - \cos x}{r^2 - 2 r \cos x + 1} dx
\end{align*}

so you can't know the value of the integral you are after (##\int_{-\pi}^\pi \dfrac{1}{r^2 - 2 r \cos x + 1} dx##) from the value of ##c_0## of ##u(x)##.

However, you can get the value of the integral you are after from the value of the Fourier coefficient, ##c_0##, of ##v(x) = 1/2 + u(x) e^{ix}##.

Or, as you say, you can use Parseval's on ##u(x)##.
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K