MHB Solve integral with laplace transform

Click For Summary
The discussion focuses on solving the integral equation using the Laplace transform. The integral part is addressed by applying the Heaviside step function, leading to a differential equation in the Laplace domain. The transformed equation simplifies to a first-order linear differential equation, which is solved to yield the expression for Y(s). The inverse transform provides a solution for y(t), which is expressed as y(t) = 2t + (Ct^2)/2. The final step involves applying the initial condition and verifying the solution against the original integral equation.
goohu
Messages
53
Reaction score
3
So the task is to solve the following integral with laplace transform.
View attachment 9423

Since t>0 we can multiply both sides with heaviside stepfunction (lets call it \theta(t)).

What I am unsure about is what happens with the integral part and how do we inpret the resulting expression?

What will it result in and how will be laplace transform the integral parts? I am also wondering what the laplace transform of y(t) will be.
 

Attachments

  • Namnlös.png
    Namnlös.png
    2 KB · Views: 145
Last edited:
Physics news on Phys.org
So you have the equation
$$ 3\int_0^t y(\tau)\,d\tau -t\,y(t)=t^2,\quad y(1)=3.$$
Here I've changed the variable of integration so it's less confusing. Now we take the Laplace Transform of the equation thus:
$$\frac{3Y(s)}{s}+Y'(s)=\frac{2}{s^3}. $$
This is now a differential equation in $s.$ It's first-order linear, so it should be pretty straight-forward to solve. Answer:
$$Y(s)=\frac{2}{s^2}+\frac{C}{s^3}. $$
Finally, the inverse transform yields
$$y(t)=2t+\frac{Ct^2}{2}. $$
Can you finish applying the initial condition, and checking that the solution works in the original integral equation?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
7
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K