POTW Solve Linear System of ODEs: x',y' w/ Initial Conditions x(0),y(0)

Click For Summary
The discussion focuses on solving the linear system of ordinary differential equations (ODEs) given by x' = 2x + 3y and y' = -3x + y, with initial conditions x(0) = 1 and y(0) = 2. The correct matrix representation and eigenvalues were recalculated, and it was noted that x and y are functions of time t. The general solution involves two constants, which can be determined using the initial conditions, although x'(0) was also calculated as 8 and y'(0) as -1. The auxiliary equation m^2 - 3m + 11 = 0 was derived, leading to a general solution expressed in terms of exponential and trigonometric functions, with the acknowledgment that different constants apply for each initial condition.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Solve the linear system of ODE ##x' = 2x + 3y##, ##y' = -3x + y## with initial conditions ##x(0) = 1, y(0) = 2##.
 
Physics news on Phys.org
The differential equation

\begin{align*}
\frac{d}{dt} \binom{x}{y} =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{x}{y}
\end{align*}

with initial conditions ##x(0)=1##, ##y(0) = 2## has the solution:

\begin{align*}
\binom{x}{y} = \exp \left\{
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix} t \right\}
\binom{1}{2}
\end{align*}

When the eigenvalues are complex and distinct such that ##\lambda_1 = \overline{\lambda_2} = a+ib## we have that

\begin{align*}
e^{At} = e^{at} \cos (bt) \mathbb{1} + \dfrac{e^{at} \sin (bt)}{b} (A - a \mathbb{1}) \qquad (*) .
\end{align*}

We will prove this formula is correct by showing that ##\frac{d}{dt} (RHS) = A (RHS)## and by noting that the ##RHS = \mathbb{1}## at ##t = 0##. By the Cayley-Hamilton theorem we have ##A^2 = 2a A - (a^2+b^2) \mathbb{1}##. We use this in the form ##A (A - a \mathbb{1}) = aA - (a^2 + b^2) \mathbb{1}## in the proof of ##\frac{d}{dt} (RHS) = A (RHS)##,

\begin{align*}
& \frac{d}{dt} \left[ e^{at} \cos (bt) \mathbb{1} + \dfrac{e^{at} \sin (bt)}{b} (A - a \mathbb{1}) \right]
\nonumber \\
& = a e^{at} \cos (bt) \mathbb{1} - b e^{at} \sin (bt) \mathbb{1} + \dfrac{a e^{at} \sin (bt)}{b} (A - a \mathbb{1}) + e^{at} \cos (bt) (A - a \mathbb{1})
\nonumber \\
& = A e^{at} \cos (bt) \mathbb{1} + \dfrac{e^{at} \sin (bt)}{b} (aA - (a^2 + b^2) \mathbb{1})
\nonumber \\
& = A \left[ e^{at} \cos (bt) \mathbb{1} + \dfrac{e^{at} \sin (bt)}{b} (A - a \mathbb{1}) \right] .
\end{align*}

The eigenvalues are determined by

\begin{align*}
\det
\begin{pmatrix}
2 - \lambda & 3 \\
-3 & 1 - \lambda
\end{pmatrix}
= 0
\end{align*}

or

\begin{align*}
\lambda^2 - 3 \lambda + 11 = 0
\end{align*}

so that

\begin{align*}
\lambda_1 = \frac{3}{2} + \frac{\sqrt{35}}{2} i , \quad \lambda_2 = \frac{3}{2} - \frac{\sqrt{35}}{2} i .
\end{align*}

So that by ##(*)## we have

\begin{align*}
e^{At} & = e^{3 t/2} \cos (\frac{ \sqrt{35} }{2} t)
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
+ e^{3 t/2} \dfrac{\sin (\frac{ \sqrt{35} }{2} t)}{\sqrt{35}}
\begin{pmatrix}
1 & 6 \\
-6 & -1
\end{pmatrix}
\end{align*}

So

\begin{align*}
\binom{x}{y} = e^{2 t/3} \cos (\frac{ \sqrt{35} }{2}t) \binom{1}{2}
+ e^{2 t/3} \dfrac{\sin (\frac{ \sqrt{35} }{2}t)}{\sqrt{35}} \binom{13}{-8}
\end{align*}
 
Last edited:
  • Like
Likes Office_Shredder
In the previous post I wrote down slightly the wrong matrix. I've now written down the correct matrix and recalculated the eigenvalues.

By the way, there are other methods of solving the problem!
 
Last edited:
julian said:
By the way, there are other methods of solving the problem!

The system is equivalent to two second order ODE's
$$ y'' - 3y'+11y , y(0)=2$$

$$ x''-3x'+11x=0, x(0)=1 $$

Algebraic error fixed ( hopefully)...
 
Last edited:
When working with these types of problems is it implied that x = x(t) and y = y(t).
 
Mayhem said:
When working with these types of problems is it implied that x = x(t) and y = y(t).
Yes, they are functions of ##t##.
 
Last edited:
erobz said:
The system is equivalent to two second order ODE's
$$ y'' - 3y'+11y , y(0)=2$$

$$ x''-3x'+11x=0, x(0)=1 $$

Algebraic error fixed ( hopefully)...
Because you have a second order differential equation the general solution will involve two unknown constants, so you need ##x(0)## and ##x'(0)##. Now, ##x'(0)## was not specified in the question but that does not present a problem because you are given a formula for ##x'(t)##. Yep?

Do you know how to go about solving your differential equation? It is a homogeneous linear differential equation of second order with constant coefficients.
 
Last edited:
julian said:
Because you have a second order differential equation the general solution will involve two unknown constants, so you need ##x(0)## and ##x'(0)##. Now, ##x'(0)## was not specified in the question but that does not present a problem because you are given a formula for ##x'(t)##. Yep?
Using the original equations and given initial conditions we find ## x'(0) = 8, y'(0) = -1##

julian said:
Do you know how to go about solving your differential equation? It is a homogeneous linear differential equation of second order with constant coefficients.

With an old textbook in front of me... Find the auxiliary equation:

$$m^2 -3m+11 = 0 \implies m = \frac{3}{2} \pm \frac{\sqrt{35}i}{2} $$

I think that implies the general solution ( for ##y## or ##x## - same ODE - different i.c. ):

$$ x(t) = y(t) = e^{ \left( \frac{3}{2}t \right) } \left( c_1 \cos \left( \frac{ \sqrt{35} }{2} t \right) + c_2 \sin \left( \frac{ \sqrt{35} }{2} t \right) \right) $$
 
There are a couple of other methods of solving the problem.

Start with the "exponential ansatz":

\begin{align*}
\binom{x(t)}{y(t)} = \binom{C}{D} e^{\lambda t} .
\end{align*}

Substituting this into

\begin{align*}
\binom{x'}{y'} =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{x}{y}
\end{align*}

we arrive at the eigenvector problem

\begin{align*}
\lambda \binom{C}{D} =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{C}{D}
\end{align*}

Let's find the eigenvalues:

\begin{align*}
\det
\begin{pmatrix}
2 - \lambda & 3 \\
-3 & 1 - \lambda
\end{pmatrix}
= 0
\end{align*}

or

\begin{align*}
\lambda^2 - 3 \lambda + 11 = 0
\end{align*}

so that

\begin{align*}
\lambda_1 = \frac{3}{2} + i \frac{\sqrt{35}}{2} , \qquad \lambda_2 = \frac{3}{2} - i \frac{\sqrt{35}}{2}
\end{align*}

As the eigenvalues are the complex conjugate of each other one of the eigenvectors will be proportional to the complex conjugate of the other. The eigenvector equation is

\begin{align*}
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{C}{D} =
(\frac{3}{2} + i \frac{\sqrt{35}}{2}) \binom{C}{D}
\end{align*}

or

\begin{align*}
\begin{pmatrix}
4 & 6 \\
-6 & 2
\end{pmatrix}
\binom{C}{D} =
(3 + i \sqrt{35}) \binom{C}{D}
\end{align*}

or

\begin{align*}
\begin{pmatrix}
1 - i \sqrt{35} & 6 \\
-6 & -1 - i \sqrt{35}
\end{pmatrix}
\binom{C}{D} = 0
\end{align*}

or

\begin{align*}
(1 - i \sqrt{35}) C + 6 D = 0
\nonumber \\
-6 C - (1 + i \sqrt{35}) D = 0
\end{align*}

Using the first condition, the two eigenvectors are

\begin{align*}
\vec{v}_1 = \binom{1}{\dfrac{-1 + i \sqrt{35}}{6}} , \qquad (\lambda_1 = \frac{3}{2} + i \frac{\sqrt{35}}{2})
\nonumber \\
\vec{v}_2 = \binom{1}{\dfrac{-1 - i \sqrt{35}}{6}} , \qquad (\lambda_2 = \frac{3}{2} - i \frac{\sqrt{35}}{2})
\end{align*}

The (real) general solution of the homogeneous differential equation is

\begin{align*}
\binom{x}{y} = C \binom{1}{\dfrac{- 1 + i \sqrt{35}}{6}} e^{(\frac{3}{2} + i \frac{\sqrt{35}}{2}) t} + C^* \binom{1}{\dfrac{-1 - i \sqrt{35}}{6}} e^{(\frac{3}{2} - i \frac{\sqrt{35}}{2}) t}
\end{align*}

Writing ##C = C_1 + i C_2##, we have

\begin{align*}
\binom{x}{y} = (C_1 + i C_2) \binom{1}{\dfrac{-1 + i \sqrt{35}}{6}} e^{(\frac{3}{2} + i \frac{\sqrt{35}}{2}) t} + c.c.
\end{align*}

so that

\begin{align*}
\binom{x}{y} = (C_1 + i C_2) \binom{1}{\dfrac{-1 + i \sqrt{35}}{6}} (\cos (\frac{\sqrt{35}}{2} t) + i \sin (\frac{\sqrt{35}}{2} t)) e^{3t/2} + c.c.
\end{align*}

or

\begin{align*}
\binom{x}{y} = \binom{C_1 + i C_2}{\dfrac{(-C_1 - C_2 \sqrt{35}) + i (-C_2 + C_1 \sqrt{35})}{6} } (\cos (\frac{\sqrt{35}}{2} t) + i \sin (\frac{\sqrt{35}}{2} t)) e^{3t/2} + c.c.
\end{align*}

or

\begin{align*}
\binom{x}{y} = 2 \binom{C_1 \cos (\frac{\sqrt{35}}{2} t) - C_2 \sin (\frac{\sqrt{35}}{2} t)}
{\dfrac{-C_1 - C_2 \sqrt{35}}{6} \cos (\frac{\sqrt{35}}{2} t) - \dfrac{-C_2 + C_1 \sqrt{35}}{6} \sin (\frac{\sqrt{35}}{2} t)} e^{3t/2}
\end{align*}

Using ##x(0)=1## and ##y(0)=2##,

\begin{align*}
\binom{1}{2} = 2 \binom{ C_1 }{ - \dfrac{ C_1 + C_2 \sqrt{35} }{6} }
\end{align*}

So ##C_1 = \frac{1}{2}##, ##1 = - \dfrac{ C_1 + C_2 \sqrt{35} }{6}##, ##C_2 = - \dfrac{13}{2 \sqrt{35}}##, and ##\dfrac{4}{\sqrt{35}} = \dfrac{ -C_2 + C_1 \sqrt{35} }{6}##.

So finally we have,

\begin{align*}
\binom{x}{y} = e^{2 t/3} \cos (\frac{ \sqrt{35} }{2}t) \binom{1}{2}
+ e^{2 t/3} \dfrac{\sin (\frac{ \sqrt{35} }{2}t)}{\sqrt{35}} \binom{13}{-8} .
\end{align*}

The differential equation

\begin{align*}
\frac{d}{dt} \binom{x}{y} =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{x}{y}
\end{align*}

with initial conditions ##x(0)=1##, ##y(0) = 2## has the solution:

\begin{align*}
\binom{x}{y} = \exp \left\{
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix} t \right\}
\binom{1}{2}
\end{align*}

Write

\begin{align*}
A =
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\end{align*}

We will compute ##\exp (At)##.

To that end, consider the eigenvector problem

\begin{align*}
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{C}{D}
= \lambda \binom{C}{D}
\end{align*}

Let's find the eigenvalues:

\begin{align*}
\det
\begin{pmatrix}
2 - \lambda & 3 \\
-3 & 1 - \lambda
\end{pmatrix}
= 0
\end{align*}

or

\begin{align*}
\lambda^2 - 3 \lambda + 11 = 0
\end{align*}

so that

\begin{align*}
\lambda_1 = \frac{3}{2} + i \frac{\sqrt{35}}{2} , \qquad \lambda_2 = \frac{3}{2} - i \frac{\sqrt{35}}{2}
\end{align*}

As the eigenvalues are the complex conjugate of each other one of the eigenvectors will be proportional to the complex conjugate of the other. The eigenvector equation is

\begin{align*}
\begin{pmatrix}
2 & 3 \\
-3 & 1
\end{pmatrix}
\binom{C}{D} =
(\frac{3}{2} + i \frac{\sqrt{35}}{2}) \binom{C}{D}
\end{align*}

or

\begin{align*}
\begin{pmatrix}
4 & 6 \\
-6 & 2
\end{pmatrix}
\binom{C}{D} =
(3 + i \sqrt{35}) \binom{C}{D}
\end{align*}

or

\begin{align*}
\begin{pmatrix}
1 - i \sqrt{35} & 6 \\
-6 & -1 - i \sqrt{35}
\end{pmatrix}
\binom{C}{D} = 0
\end{align*}

or

\begin{align*}
(1 - i \sqrt{35}) C + 6 D = 0
\nonumber \\
-6 C - (1 + i \sqrt{35}) D = 0
\end{align*}

Using the first condition, the two normalised eigenvectors are

\begin{align*}
\vec{v}_1 = \frac{1}{\sqrt{7}} \binom{1}{\dfrac{-1 + i \sqrt{35}}{6}} , \qquad (\lambda_1 = \frac{3}{2} + i \frac{\sqrt{35}}{2})
\nonumber \\
\vec{v}_2 = \frac{1}{\sqrt{7}} \binom{1}{\dfrac{-1 - i \sqrt{35}}{6}} , \qquad (\lambda_2 = \frac{3}{2} - i \frac{\sqrt{35}}{2})
\end{align*}

Form the matrix ##U## whose columns are ##\vec{v}_1## and ##\vec{v}_2##. Then

\begin{align*}
\exp ( A t ) & = U U^{-1} \exp ( A t ) U U^{-1}
\nonumber \\
& = U \left( \mathbb{1} + U^{-1} A U t + \frac{1}{2!} U^{-1} A U U^{-1} A U t^2 + \cdots \right) U^{-1}
\nonumber \\
& = U \exp ( \mathcal{D} t ) U^{-1}
\end{align*}

where

\begin{align*}
\mathcal{D} =
\begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{pmatrix}
=
\begin{pmatrix}
\frac{3}{2} + i \frac{\sqrt{35}}{2} & 0 \\
0 & \frac{3}{2} - i \frac{\sqrt{35}}{2}
\end{pmatrix} .
\end{align*}

We have

\begin{align*}
U = \frac{1}{6 \sqrt{7}}
\begin{pmatrix}
6 & 6 \\
-1+i\sqrt{35} & -1-i\sqrt{35}
\end{pmatrix}
\end{align*}

and

\begin{align*}
U^{-1} = \frac{\sqrt{35}}{10 \sqrt{7}}
\begin{pmatrix}
\sqrt{35}-i & -i6 \\
\sqrt{35}+i & i6
\end{pmatrix}
\end{align*}

and

\begin{align*}
\exp (\mathcal{D} t) = e^{3t/2}
\begin{pmatrix}
e^{i \sqrt{35}t/2} & 0 \\
0 & e^{-i \sqrt{35}t/2}
\end{pmatrix}
\end{align*}

We can now compute ##\exp ( At )##,

\begin{align*}
& \exp (At)
\nonumber \\
& =
\frac{e^{3t/2} \sqrt{35}}{420}
\begin{pmatrix}
6 & 6 \\
-1+i\sqrt{35} & -1-i\sqrt{35}
\end{pmatrix}
\begin{pmatrix}
e^{i \sqrt{35}t/2} & 0 \\
0 & e^{-i \sqrt{35}t/2}
\end{pmatrix}
\begin{pmatrix}
\sqrt{35}-i & -i6 \\
\sqrt{35}+i & i6
\end{pmatrix}
\nonumber \\
& = \frac{e^{3t/2} \sqrt{35}}{420}
\begin{pmatrix}
6 & 6 \\
-1+i\sqrt{35} & -1-i\sqrt{35}
\end{pmatrix}
\begin{pmatrix}
(\sqrt{35}-i) e^{i \sqrt{35}t/2} & -i6 e^{i \sqrt{35}t/2} \\
(\sqrt{35}+i) e^{-i \sqrt{35}t/2} & i6 e^{-i \sqrt{35}t/2}
\end{pmatrix}
\nonumber \\
& = \frac{e^{\frac{3}{2}t} \sqrt{35}}{420}
\begin{pmatrix}
6 (\sqrt{35}-i) e^{i \frac{\sqrt{35}}{2}t} + 6 (\sqrt{35}+i) e^{-i \frac{\sqrt{35}}{2}t} & -36 i e^{i \frac{\sqrt{35}}{2}t} + i 36 e^{-i \frac{\sqrt{35}}{2}t} \\
36 i e^{i \frac{\sqrt{35}}{2}t} - i 36 e^{-i \frac{\sqrt{35}}{2}t} & i6 (1-i\sqrt{35}) e^{i \sqrt{35}t/2} - i6 (1+i\sqrt{35}) e^{-i \frac{\sqrt{35}}{2}t}
\end{pmatrix}
\nonumber \\
& = \frac{e^{\frac{3}{2}t} \sqrt{35}}{70}
\begin{pmatrix}
(\sqrt{35}-i) e^{i \frac{\sqrt{35}}{2}t} + (\sqrt{35}+i) e^{-i \frac{\sqrt{35}}{2}t} & -6 i e^{i \frac{\sqrt{35}}{2}t} + i 6 e^{-i \frac{\sqrt{35}}{2}t} \\
6 i e^{i \frac{\sqrt{35}}{2}t} - i 6 e^{-i \frac{\sqrt{35}}{2}t} & (i+\sqrt{35}) e^{i \frac{\sqrt{35}}{2}t} +(-i+\sqrt{35}) e^{-i \frac{\sqrt{35}}{2}t}
\end{pmatrix}
\nonumber \\
& = e^{3t/2}
\begin{pmatrix}
\cos (\sqrt{35}t/2) + \dfrac{\sin (\sqrt{35}t/2)}{\sqrt{35}} & 6 \dfrac{\sin (\sqrt{35}t/2)}{\sqrt{35}} \\
- 6 \dfrac{\sin (\sqrt{35}t/2)}{\sqrt{35}} & \cos (\sqrt{35}t/2) - \dfrac{\sin (\sqrt{35}t/2)}{\sqrt{35}}
\end{pmatrix}
\end{align*}

That is,

\begin{align*}
e^{At} & = e^{3 t/2} \cos (\frac{ \sqrt{35} }{2} t)
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
+ e^{3 t/2} \dfrac{\sin (\frac{ \sqrt{35} }{2} t)}{\sqrt{35}}
\begin{pmatrix}
1 & 6 \\
-6 & -1
\end{pmatrix}
\end{align*}

So

\begin{align*}
\binom{x}{y} = e^{2 t/3} \cos (\frac{ \sqrt{35} }{2}t) \binom{1}{2}
+ e^{2 t/3} \dfrac{\sin (\frac{ \sqrt{35} }{2}t)}{\sqrt{35}} \binom{13}{-8}
\end{align*}
 
Last edited:
  • #10
erobz said:
Using the original equations and given initial conditions we find ## x'(0) = 8, y'(0) = -1##
With an old textbook in front of me... Find the auxiliary equation:

$$m^2 -3m+11 = 0 \implies m = \frac{3}{2} \pm \frac{\sqrt{35}i}{2} $$

I think that implies the general solution ( for ##y## or ##x## - same ODE - different i.c. ):

$$ x(t) = y(t) = e^{ \left( \frac{3}{2}t \right) } \left( c_1 \cos \left( \frac{ \sqrt{35} }{2} t \right) + c_2 \sin \left( \frac{ \sqrt{35} }{2} t \right) \right) $$
But different constants in each case, not the same.
 
  • #11
bob012345 said:
But different constants in each case, not the same.
Yeah, I was just being lazy. Thats why I said the general solution is... the constants would be determined for the initial conditions of each. I would think those constants aren't necessarily distinct in the general solution...so I thought I could get away with it?