Solve ODE: Integrating Factor Solution w/ Mike's Query

  • Thread starter Thread starter bsodmike
  • Start date Start date
  • Tags Tags
    Ode
bsodmike
Messages
82
Reaction score
0

Homework Statement



This is a solution detailed in a past paper,

http://stuff.bsodmike.com/sensors_pastpaper.png


Homework Equations


Utilise an integrating factor to solve as detailed by myself https://www.physicsforums.com/showthread.php?t=283610".


The Attempt at a Solution



It can be said that,

\dfrac{d\theta}{dt}+\dfrac{\theta}{\beta}=\dfrac{\theta_m}{\beta}

Hence, the solution by employing an integrating factor would yield,

e^{t/\beta}\theta=\dfrac{\theta_m}{\beta}\int{e^{t/\beta}\,dt}

\theta=\dfrac{\theta_m}{\beta}+Ce^{-t/\beta}

The problem is that I'm having the extra 'beta' term as shown above. Any ideas?

Thanks!
Mike
 
Last edited by a moderator:
Physics news on Phys.org
A more direct approach, solving the homogenous part:

\int{\dfrac{1}{\theta}\,d\theta}=\int{-\dfrac{1}{\beta}\,dt}

ln(\theta)=-\dfrac{t}{\beta}+C

\theta=e^{-t/\beta+C}

Now, my memory here is fuzzy but e^{-t/\beta+C} = e^{-t/\beta}+e^C ??
 
Ah, another small blunder, of course!

Now, \int{e^{t/\beta}\,dt}=\beta e^{t/\beta}+C. thus, the 'beta's cancel,

e^{t/\beta}\theta=\theta_m e^{t/\beta}+C

Dividing by e^{t/\beta}, yields,

\theta=Ce^{-t/\beta}+\theta_m
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top