vanceEE
- 109
- 2
I've come across this problem while self studying Ordinary Differential Equations and I really need help. The problem asks me to simply eliminate derivatives, I do not need to separate. The book shows the answer, but not the steps.
problem:
\frac{dy}{dx}= \frac{y^2}{1-xy}
answer:
ln(y)=xy
So far, I'm here...
\frac{dy}{dx}= \frac{y^2}{1-xy}
y' = \frac{y^2}{1-xy}
y' = \frac{y}{\frac{1}{y}-x}
y = y'(\frac{1}{y}-x)
y = \frac{y'}{y} - y'x
\frac{y'}{y} = y+ y'x
now integrating both sides we get..
ln (y) = ∫(y + y'x dx)
But how do I integrate y+y'x?
problem:
\frac{dy}{dx}= \frac{y^2}{1-xy}
answer:
ln(y)=xy
So far, I'm here...
\frac{dy}{dx}= \frac{y^2}{1-xy}
y' = \frac{y^2}{1-xy}
y' = \frac{y}{\frac{1}{y}-x}
y = y'(\frac{1}{y}-x)
y = \frac{y'}{y} - y'x
\frac{y'}{y} = y+ y'x
now integrating both sides we get..
ln (y) = ∫(y + y'x dx)
But how do I integrate y+y'x?