MHB Solve Quadratic Equation: Find c-a Given p and q

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
AI Thread Summary
The discussion revolves around solving for the value of c - a in the quadratic equation ax^2 - 5x + c = 0, given that p and q are roots and form a geometric sequence with 1/(8pq). The geometric sequence leads to the conclusion that q = 1/2, and using the logarithmic equation log_a(18) + log_a(p) = 1, it is derived that p = a/18. Substituting these values into the equations a(p + q) = 5 and apq = c allows for the determination of a and c in terms of each other. Ultimately, the calculations reveal that c - a simplifies to a specific value, concluding the problem-solving process.
Monoxdifly
MHB
Messages
288
Reaction score
0
Given p and q are the roots of the quadratic equation $$ax^2-5x+c=0$$ with $$a\neq0$$. If $$p,q,\frac1{8pq}$$ forms a geometric sequence and $$log_a18+log_ap=1$$, the value of c – a is ...
A. $$\frac13$$
B. $$\frac12$$
C. 3
D. 5
E. 7

Since $$p,q,\frac1{8pq}$$ is a geometric sequence, then:
$$\frac{q}{p}=\frac{\frac1{8pq}}q$$
$$\frac{q}{p}=\frac1{8pq^2}$$
$$q=\frac1{8q^2}$$
$$q^3=\frac18$$
$$q=\frac12$$

Also, since $$log_a18+log_ap=1$$, then:
$$log_a18p=log_aa$$
18p = a
$$p=\frac{a}{18}$$

This is where the real problem starts. No matter how I substitute, either it will cancel out the a's or p's, or becoming a quadratic equation with no real roots. What should I do?
 
Mathematics news on Phys.org
Additionally we have $a(x-p)(x-q)=ax^2 - a(p+q)x + apq = ax^2-5x+c$.
So $a(p+q)=5$ and $apq = c$.
If we substitute the $p$ and $q$ that we've found, we can find $a$ and an expression for $c$ in $a$, and finally $c-a$.
 
a(a/18)(1/2) = c
(a^2)/36 = c
a^2 = 36c

a(p + q) = 5
a(a/18 + 1/2) = 5
(a^2)/18 + 1/2 a = 5
36c/18 + 1/2 a = 5
2c + 1/2 a = 5
1/2 a = 5 - 2c
a = 10 - 4c
c - a = c - (10 - 4c) = -3c - 10
Sorry, still stuck.
 
$a(p+q) = 5 \implies a\left(\dfrac{a}{18}+\dfrac{1}{2}\right) = 5 \implies a^2+9a-90=0 \implies a = 6$ since $a>0$ (why?)

finally, you have $c = apq$

you should be able to finish from here

btw ... $c-(10-4c) \ne -3c-10$
 
Ah, I see. Thank you very much! :D
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top