Solve Quickly: -1 1 1 1 1 Matrix Problem

  • Thread starter Thread starter Derill03
  • Start date Start date
  • Tags Tags
    Matrices
Derill03
Messages
62
Reaction score
0
This matrix is said to be quickly solvable but I am not sure of the trick:

-1 1 1 1 1
1 -1 1 1 1
1 1 -1 1 1
1 1 1 -1 1
1 1 1 1 -1

the matrix is all 1's with -1's on the main diagonal, I am not sure if i should row reduce until i have an upper triangular matrix and use product of diagonal entries or if there is a simple trick I am missing
 
Physics news on Phys.org
One way is to realize that it is a rank-1 update of a matrix you know how to invert
\left(\begin{matrix}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{matrix}\right) = \left(\begin{matrix}1 \\ 1 \\ 1\end{matrix}\right)\left(\begin{matrix}1 & 1 & 1\end{matrix}\right) - 2 \left(\begin{matrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{matrix}\right)

Apply the Sherman-Morrison formula:
http://en.wikipedia.org/wiki/Sherman–Morrison_formula

There may be other ways.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top