Asphyxiated
- 263
- 0
Homework Statement
Solve the differential equation:
x \frac {dy}{dx} = y + e^{\frac {y}{x}}
with the change of variable:
v = \frac {y}{x}
Homework Equations
The Attempt at a Solution
I would just like to know if I have successfully solved the problem. Thanks!
First if we divide by x the equation becomes:
\frac {dy}{dx} = \frac {y}{x} + \frac {e^{\frac{y}{x}}}{x}
then if:
v = \frac {y}{x}
then:
\frac {dv}{dx} = \frac {x*\frac{dy}{dx} - y}{x^{2}}= \frac {\frac{dy}{dx}}{x}-\frac{y}{x^{2}}
so:
\frac {dy}{dx}= \frac{dv}{dx}x+\frac {y}{x}=\frac{dv}{dx}x+v
now I can substitute this back into the original differential equation:
\frac {dv}{dx}x+v=v+\frac{e^{v}}{x}
the v on both sides will cancel out with subtraction so you get:
\frac{dv}{dx}x=\frac{e^{v}}{x}
or
\frac{dv}{dx} = \frac {e^{v}}{x^{2}}
this can be separated like so:
\frac {dv}{e^{v}}=\frac {dx}{x^{2}}
\int e^{-v}dv= \int x^{-2}dx
-e^{-v}=-\frac {1}{x} + c
e^{-v}=\frac {1}{x} - c
-v = ln ( \frac {1}{x} -c)
v = -ln ( \frac {1}{x} -c)
then to get the y of the original equation:
\frac {y}{x} = -ln ( \frac {1}{x} -c)
y = -xln ( \frac {1}{x} -c)