Solve the given problem involving parametric equations

Click For Summary

Homework Help Overview

The discussion revolves around a problem involving parametric equations and the relationships between gradients of chords formed by points on a curve. Participants are exploring the conditions under which two chords are perpendicular and the implications of this relationship.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants present various methods to find gradients of chords defined by points P, Q, R, and S. Some explore calculus-based approaches while others suggest non-calculus methods. Questions arise regarding the correctness of methods used to establish relationships between gradients and the conditions for perpendicularity.

Discussion Status

There is an ongoing exploration of different approaches to the problem, with some participants questioning the validity of certain methods. Guidance has been offered regarding the relationship between the gradients of the chords and the condition for perpendicularity, but no consensus has been reached on the correct method to prove the statement.

Contextual Notes

Participants are working within the constraints of a homework problem, which may limit the information available and the methods permissible for solving the problem. There is a focus on proving a specific relationship involving the product of certain variables.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
##P,Q,R## and ##S## are four points on the hyperbola ##x=ct, y=\dfrac{c}{t}## with parameters ##p,q,r## and ##s## respectively. Prove that, if the chord ##PQ## is perpendicular to the chord ##RS##, then ##pqrs=-1##.
Relevant Equations
parametric equations
My take;

##y=\dfrac{c^2}{x}##

##y+x\dfrac{dy}{dx}=0##

##\dfrac{dy}{dx}=\dfrac{-y}{x}##

##y-\dfrac{c}{t}=-\dfrac{y}{x}(x-ct)##

##yt-c=-\dfrac{yt}{x}(x-ct)##

##xyt-cx=-yt(x-ct)##

##c^2t-cx=-cx+yct^2##

##c^2t-cx=-cx+ytct##

##c^2t-cx=-cx+c^2t##

##⇒-cx=-cx##

##⇒cx=cx##

Therefore it follows that,

##\dfrac{c}{c}=\dfrac{x}{x}##

##x=c##

##y## will be given by,

##y=\dfrac{c^2}{c}=c##

point P will have co-ordinates ##(x,y)=(c,c)## and point Q will have co-ordinates ##(x,y)=(-c,-c)## where gradient is given by;

##m=\dfrac{c--c}{c--c}=\dfrac{2c}{2c}=1##

It follows that the perpendicular to the chord RS will have gradient =-1.

I do not have the solution to this question...your input is highly appreciated...
 
Physics news on Phys.org
Non-calculus solution:

The 4 points are: ##P(cp, \frac cp), Q(cq, \frac cq), R(cr, \frac cr)## and ##S(cs, \frac cs)##.

Start by finding the gradient of ##PQ##: ##m_{PQ} = \frac { \Delta y}{\Delta x}## where, for example, ## \Delta x= cq - cp = c(q-p)##.

Take it from there !
 
Steve4Physics said:
Non-calculus solution:

The 4 points are: ##P(cp, \frac cp), Q(cq, \frac cq), R(cr, \frac cr)## and ##S(cs, \frac cs)##.

Start by finding the gradient of ##PQ##: ##m_{PQ} = \frac { \Delta y}{\Delta x}## where, for example, ## \Delta x= cq - cp = c(q-p)##.

Take it from there !
Ok i am getting the following;

Gradient of chord ##PQ=\left[\dfrac{-1}{qp}\right]## now if ##PQ## is perpendicular to chord ##RS## then the product of their gradients =##-1##, therefore,Gradient of chord ##RS=\left[\dfrac{-1}{sr}\right]=-1, ⇒sr=1##

...therefore ##pqrs=-1##.
 
chwala said:
Gradient of chord ##RS=\left[\dfrac{-1}{sr}\right]=-1, ⇒sr=1##

...therefore ##pqrs=-1##.
Correct final conclusion but the method is wrong.

##RS=\left[\dfrac{-1}{sr}\right]=-1, ⇒sr=1## doesn't work. For example the gradient of SR could be 3 and the gradient of PQ could be ##-\frac 13##.

Remember, you are being asked to prove "that, if the chord PQ is perpendicular to the chord RS, then pqrs= -1".
 
I do not seem to get it...

Ok, let ##m_1## and ##m_2## be the gradients of ##PQ## and ##RS## respectively;

##m_1=\left[\dfrac{-1}{qp}\right]##

##m_2=\left[\dfrac{-1}{sr}\right]##

we know that ##m_1×m_2=-1## therefore,

##\dfrac{-1}{qp}×\dfrac{-1}{sr}=-1##

##\dfrac{1}{qp}×\dfrac{1}{sr}=-1##

##\dfrac{1}{pqsr}=-1##

on cross-multiplying we end up with;

##pqsr=-1##.
 
  • Like
Likes   Reactions: Steve4Physics
The vector from P to Q is ##(q-p)c\hat{i}+\left(\frac{1}{q}-\frac{1}{p}\right)c\hat{j}##. The vector from R to S is ##(s-r)c\hat{i}+\left(\frac{1}{s}-\frac{1}{r}\right)c\hat{j}##. For these chords to be perpendicular, the dot product of these two vectors must be zero.
 
  • Like
Likes   Reactions: chwala

Similar threads

Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
1
Views
1K