B Solve x=Asin(ct) and y=Bsin(dt) for the period of the system of two equations

  • B
  • Thread starter Thread starter SSGD
  • Start date Start date
  • Tags Tags
    Period System
SSGD
Messages
49
Reaction score
4
I have been trying figure out how to solve the the period of the system of the two equations in the system. I have been searching for examples but this specific topic isn't documented on the internet very well or I'm not very good and searching. Any help would be appriciated.
 
Mathematics news on Phys.org
Try posting a specific question in the homework section.
 
It's not homework. And the above equations are the specific problem.
 
It is homework-like. It is unclear what you mean. Two separate systems with their own period? That is a standard textbook question. Do you look for a common period? Then the smallest common multiple (if existing) will be interesting.
 
Each equation has its own period. That is not an issue, there is also a sequence of times where both equations simultaneously repeat.

x(t+Tx)=x(t)
y(t+Ty)=y(t)

x(t+Ts)=x(t)
y(t+Ts)=y(t)

I am looks for Ts a time that satisfies both equations simultaneously.
Sorry for the unclear question.
 
SSGD said:
I am looks for Ts a time that satisfies both equations simultaneously.
Then you should use different symbols for the periods.

See above: the smallest common multiple (if it exists) will do the job. If it doesn't exist, there is no such period.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top