B Solve x=Asin(ct) and y=Bsin(dt) for the period of the system of two equations

  • B
  • Thread starter Thread starter SSGD
  • Start date Start date
  • Tags Tags
    Period System
Click For Summary
To solve the period of the equations x=Asin(ct) and y=Bsin(dt), one must determine if there is a common period Ts that satisfies both equations simultaneously. Each equation has its own distinct period, and finding a common period involves calculating the smallest common multiple of these individual periods. If a common period exists, it will be the time at which both equations repeat their values together. If no common period can be found, then such a simultaneous period does not exist. Understanding the relationship between the periods of the two equations is crucial for solving the problem effectively.
SSGD
Messages
49
Reaction score
4
I have been trying figure out how to solve the the period of the system of the two equations in the system. I have been searching for examples but this specific topic isn't documented on the internet very well or I'm not very good and searching. Any help would be appriciated.
 
Mathematics news on Phys.org
Try posting a specific question in the homework section.
 
It's not homework. And the above equations are the specific problem.
 
It is homework-like. It is unclear what you mean. Two separate systems with their own period? That is a standard textbook question. Do you look for a common period? Then the smallest common multiple (if existing) will be interesting.
 
Each equation has its own period. That is not an issue, there is also a sequence of times where both equations simultaneously repeat.

x(t+Tx)=x(t)
y(t+Ty)=y(t)

x(t+Ts)=x(t)
y(t+Ts)=y(t)

I am looks for Ts a time that satisfies both equations simultaneously.
Sorry for the unclear question.
 
SSGD said:
I am looks for Ts a time that satisfies both equations simultaneously.
Then you should use different symbols for the periods.

See above: the smallest common multiple (if it exists) will do the job. If it doesn't exist, there is no such period.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...