Solving 3D Schrodinger Equation - Explaining 1/X(x) Term

  • Thread starter Thread starter Master J
  • Start date Start date
  • Tags Tags
    3d Schrödinger
Master J
Messages
219
Reaction score
0
The schrodinger equation in 3D (time independent).

Letting Phi = X(x).Y(y).Z(z), and solving as a PDE...

The equation looks pretty much the same except there is a separate Hamiltonian for each of the Cartesian coordinates x y z. However, the 1/X(x) term etc. really confuses me, I don't know where it comes from. Could someone perhaps explain??

ie. H_x = [-(h^2)/2m].[1/X(x)].[(d^2)X(x)/d(X(x))^2] + V(x)
^^^^

where h is representing h-bar, and d the partial derivative.

Cheers guys!:biggrin:
 
Physics news on Phys.org
It occurs because you divide through by 1/XYZ to isolate the equations.

But note that using a separation in Cartesian coordinates is not always a viable solution, and will only work for some potentials.
 
Can you perhaps outline the derivation from the start? It's just clearing it up for me...
 
It goes something like assume the potential is an infinite square potential

V(x,y,z) = \left(\begin{array}{cc}0 if x,y,z < a \\ \infty else

We can assume a separable solution \Psi (x,y,z) = X(x)Y(y)Z(z)

\frac{-\hbar^2}{2m} [Y(y)Z(z) \frac{d^2 X}{dx^2}+X(x)Z(z) \frac{d^2 Y}{dy^2}+X(x)Y(y) \frac{d^2 Z}{dz^2}] + V(x,y,z)XYZ = E(XYZ)

Then just divide everything by 1/XYZ.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top