MHB Solving $(a+b+c)^2$ for Positive $a,b,c$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Positive
AI Thread Summary
The problem involves finding the value of \((a+b+c)^2\) given the equations \(a^2+b^2+ab=9\), \(b^2+c^2+bc=16\), and \(c^2+a^2+ca=25\) for positive real numbers \(a\), \(b\), and \(c\). By manipulating these equations, relationships between the variables are established, leading to a quadratic equation in terms of \(\Sigma^2\). The solutions to this equation yield \(\Sigma^2 = 25 + 12\sqrt{3}\) as the valid solution, since the other solution does not satisfy the conditions of the problem. The discussion highlights the elegance of the solution and the significance of the numbers involved. Overall, the evaluation of \((a+b+c)^2\) concludes with the result of \(25 + 12\sqrt{3}\).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given positive real values $a,\,b,\,c$ such that

$a^2+b^2+ab=9$

$b^2+c^2+bc=16$

$c^2+a^2+ca=25$

Evaluate $(a+b+c)^2$.

Note:

If you've noticed that I've already posted this problem before, please kindly send me a PM so I could delete this one. Thanks in advance.
 
Mathematics news on Phys.org
anemone said:
Given positive real values $a,\,b,\,c$ such that

$a^2+b^2+ab=9\ \qquad (1)$

$b^2+c^2+bc=16\qquad(2)$

$c^2+a^2+ca=25\qquad(3)$

Evaluate $(a+b+c)^2$.
[sp]Let $\Sigma = a+b+c.$ Subtract (1) from (2): $c^2-a^2 + (c-a)b = 7,$ which can be written as $(c-a)\Sigma = 7.$ Thus $(c-a)^2 = \dfrac{49}{\Sigma^2}.$ Next, (3) can be written as $(c-a)^2 + 3ca = 25.$ Therefore $3ca = 25 - \dfrac{49}{\Sigma^2}.$

Applying the same tactics to the other pairs of variables, we get $3ab = 9 - \dfrac{81}{\Sigma^2}$ and $3bc = 16 - \dfrac{256}{\Sigma^2}.$

Next, add the three equations (1), (2), (3): $2(a^2+b^2+c^2) + ab + bc + ca = 50$, which can be written as $2\Sigma^2 - 3(ab+bc+ca) = 50.$ Subsitute the above expressions for $ca$, $ab$ and $bc$ to get $2\Sigma^2 - 50 + \dfrac{386}{\Sigma^2} = 50$, which reduces to $\Sigma^4 - 50 \Sigma^2 + 193 = 0.$ That quadratic equation has solutions $\Sigma^2 = 25 \pm 12\sqrt3.$ But $\Sigma^2 > (a+c)^2 > c^2+a^2 + ca = 25$, so $\Sigma^2$ cannot be equal to $25 - 12\sqrt3.$ Therefore $\Sigma^2 = 25 + 12\sqrt3.$[/sp]
 
Well done, Opalg! And thanks for participating!:)

I've another good solution to share with the members at MHB:
Note that the system of equations can be transformed into$a^2+b^2-2ab\cos 120^{\circ}=9$

$b^2+c^2-2bc\cos 120^{\circ}=16$

$c^2+a^2-2ca\cos 120^{\circ}=25$

We can then transform the problem into one of a geometrical nature by constructing segments of length $a,\,b$ and $c$ inside a $3-4-5$ triangle as shown:

View attachment 2861
Next, using the fact that the area of any triangle is $\dfrac{xy\sin Z}{2}$, we get that

$\dfrac{ab\sin 120^{\circ}}{2}+\dfrac{bc\sin 120^{\circ}}{2}+\dfrac{ca\sin 120^{\circ}}{2}=\dfrac{\sqrt{3}(ab+bc+ca)}{2(2)}=6$ and so $ab+bc+ca=8\sqrt{3}$.

Adding all three original equations together yields

$2(a^2+b^2+c^2)+ab+bc+ca=50$

Plugging the value of $ab+bc+ca$ in and simlyflying gives $a^2+b^2+c^2=25-4\sqrt{3}$, finally,

$(a+b+c)^2=a^2+b^2+c^2+2(a+bc+ca)=25-4\sqrt{3}+2(8\sqrt{3})=25+12\sqrt{3}$.
 

Attachments

  • Find (a+b+c)^2.JPG
    Find (a+b+c)^2.JPG
    8.2 KB · Views: 104
anemone said:
Well done, Opalg! And thanks for participating!:)

I've another good solution to share with the members at MHB:
Note that the system of equations can be transformed into$a^2+b^2-2ab\cos 120^{\circ}=9$

$b^2+c^2-2bc\cos 120^{\circ}=16$

$c^2+a^2-2ca\cos 120^{\circ}=25$

We can then transform the problem into one of a geometrical nature by constructing segments of length $a,\,b$ and $c$ inside a $3-4-5$ triangle as shown:

https://www.physicsforums.com/attachments/2861
Next, using the fact that the area of any triangle is $\dfrac{xy\sin Z}{2}$, we get that

$\dfrac{ab\sin 120^{\circ}}{2}+\dfrac{bc\sin 120^{\circ}}{2}+\dfrac{ca\sin 120^{\circ}}{2}=\dfrac{\sqrt{3}(ab+bc+ca)}{2(2)}=6$ and so $ab+bc+ca=8\sqrt{3}$.

Adding all three original equations together yields

$2(a^2+b^2+c^2)+ab+bc+ca=50$

Plugging the value of $ab+bc+ca$ in and simlyflying gives $a^2+b^2+c^2=25-4\sqrt{3}$, finally,

$(a+b+c)^2=a^2+b^2+c^2+2(a+bc+ca)=25-4\sqrt{3}+2(8\sqrt{3})=25+12\sqrt{3}$.
Very elegant solution! I suspected that the numbers 9, 16, 25 ought to have some significance in this problem, but I could not see how.
 
Opalg said:
Very elegant solution! I suspected that the numbers 9, 16, 25 ought to have some significance in this problem, but I could not see how.

Thank you, Opalg for your compliment! I know I'm not the solver, but when you or any other members who liked my shared solutions (that are of others' production), I feel very delighted and happy! The number one and foremost reason that fuels my happiness is I love to be acknowledged by the fact that there are members who also liked and enjoyed that particular challenge problem as much as I did!:o
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top