Solving $(a+b+c)^2$ for Positive $a,b,c$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Positive
Click For Summary

Discussion Overview

The discussion revolves around solving the equation $(a+b+c)^2$ given the conditions involving positive real values $a, b, c$ and three specific equations: $a^2+b^2+ab=9$, $b^2+c^2+bc=16$, and $c^2+a^2+ca=25$. The focus is on exploring the relationships between these variables and deriving the value of $(a+b+c)^2$.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant presents the problem and derives relationships between the variables by manipulating the given equations.
  • Another participant confirms the solution approach and expresses appreciation for the elegance of the solution.
  • Some participants note the significance of the numbers 9, 16, and 25, suggesting they may have a deeper meaning in the context of the problem.
  • A participant expresses joy in being acknowledged for sharing solutions, emphasizing the community aspect of problem-solving.

Areas of Agreement / Disagreement

Participants generally agree on the approach taken to solve the problem, but there is no consensus on the significance of the numbers involved or the implications of the derived relationships.

Contextual Notes

The discussion does not resolve the significance of the numbers 9, 16, and 25, nor does it clarify all mathematical steps involved in the derivation of $(a+b+c)^2$.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given positive real values $a,\,b,\,c$ such that

$a^2+b^2+ab=9$

$b^2+c^2+bc=16$

$c^2+a^2+ca=25$

Evaluate $(a+b+c)^2$.

Note:

If you've noticed that I've already posted this problem before, please kindly send me a PM so I could delete this one. Thanks in advance.
 
Mathematics news on Phys.org
anemone said:
Given positive real values $a,\,b,\,c$ such that

$a^2+b^2+ab=9\ \qquad (1)$

$b^2+c^2+bc=16\qquad(2)$

$c^2+a^2+ca=25\qquad(3)$

Evaluate $(a+b+c)^2$.
[sp]Let $\Sigma = a+b+c.$ Subtract (1) from (2): $c^2-a^2 + (c-a)b = 7,$ which can be written as $(c-a)\Sigma = 7.$ Thus $(c-a)^2 = \dfrac{49}{\Sigma^2}.$ Next, (3) can be written as $(c-a)^2 + 3ca = 25.$ Therefore $3ca = 25 - \dfrac{49}{\Sigma^2}.$

Applying the same tactics to the other pairs of variables, we get $3ab = 9 - \dfrac{81}{\Sigma^2}$ and $3bc = 16 - \dfrac{256}{\Sigma^2}.$

Next, add the three equations (1), (2), (3): $2(a^2+b^2+c^2) + ab + bc + ca = 50$, which can be written as $2\Sigma^2 - 3(ab+bc+ca) = 50.$ Subsitute the above expressions for $ca$, $ab$ and $bc$ to get $2\Sigma^2 - 50 + \dfrac{386}{\Sigma^2} = 50$, which reduces to $\Sigma^4 - 50 \Sigma^2 + 193 = 0.$ That quadratic equation has solutions $\Sigma^2 = 25 \pm 12\sqrt3.$ But $\Sigma^2 > (a+c)^2 > c^2+a^2 + ca = 25$, so $\Sigma^2$ cannot be equal to $25 - 12\sqrt3.$ Therefore $\Sigma^2 = 25 + 12\sqrt3.$[/sp]
 
Well done, Opalg! And thanks for participating!:)

I've another good solution to share with the members at MHB:
Note that the system of equations can be transformed into$a^2+b^2-2ab\cos 120^{\circ}=9$

$b^2+c^2-2bc\cos 120^{\circ}=16$

$c^2+a^2-2ca\cos 120^{\circ}=25$

We can then transform the problem into one of a geometrical nature by constructing segments of length $a,\,b$ and $c$ inside a $3-4-5$ triangle as shown:

View attachment 2861
Next, using the fact that the area of any triangle is $\dfrac{xy\sin Z}{2}$, we get that

$\dfrac{ab\sin 120^{\circ}}{2}+\dfrac{bc\sin 120^{\circ}}{2}+\dfrac{ca\sin 120^{\circ}}{2}=\dfrac{\sqrt{3}(ab+bc+ca)}{2(2)}=6$ and so $ab+bc+ca=8\sqrt{3}$.

Adding all three original equations together yields

$2(a^2+b^2+c^2)+ab+bc+ca=50$

Plugging the value of $ab+bc+ca$ in and simlyflying gives $a^2+b^2+c^2=25-4\sqrt{3}$, finally,

$(a+b+c)^2=a^2+b^2+c^2+2(a+bc+ca)=25-4\sqrt{3}+2(8\sqrt{3})=25+12\sqrt{3}$.
 

Attachments

  • Find (a+b+c)^2.JPG
    Find (a+b+c)^2.JPG
    8.2 KB · Views: 112
anemone said:
Well done, Opalg! And thanks for participating!:)

I've another good solution to share with the members at MHB:
Note that the system of equations can be transformed into$a^2+b^2-2ab\cos 120^{\circ}=9$

$b^2+c^2-2bc\cos 120^{\circ}=16$

$c^2+a^2-2ca\cos 120^{\circ}=25$

We can then transform the problem into one of a geometrical nature by constructing segments of length $a,\,b$ and $c$ inside a $3-4-5$ triangle as shown:

https://www.physicsforums.com/attachments/2861
Next, using the fact that the area of any triangle is $\dfrac{xy\sin Z}{2}$, we get that

$\dfrac{ab\sin 120^{\circ}}{2}+\dfrac{bc\sin 120^{\circ}}{2}+\dfrac{ca\sin 120^{\circ}}{2}=\dfrac{\sqrt{3}(ab+bc+ca)}{2(2)}=6$ and so $ab+bc+ca=8\sqrt{3}$.

Adding all three original equations together yields

$2(a^2+b^2+c^2)+ab+bc+ca=50$

Plugging the value of $ab+bc+ca$ in and simlyflying gives $a^2+b^2+c^2=25-4\sqrt{3}$, finally,

$(a+b+c)^2=a^2+b^2+c^2+2(a+bc+ca)=25-4\sqrt{3}+2(8\sqrt{3})=25+12\sqrt{3}$.
Very elegant solution! I suspected that the numbers 9, 16, 25 ought to have some significance in this problem, but I could not see how.
 
Opalg said:
Very elegant solution! I suspected that the numbers 9, 16, 25 ought to have some significance in this problem, but I could not see how.

Thank you, Opalg for your compliment! I know I'm not the solver, but when you or any other members who liked my shared solutions (that are of others' production), I feel very delighted and happy! The number one and foremost reason that fuels my happiness is I love to be acknowledged by the fact that there are members who also liked and enjoyed that particular challenge problem as much as I did!:o
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K