- #1
- 143
- 2
$$w'+2w=0\\ \frac { dw }{ dx } =-2w\\ I(x)={ e }^{ 2x }\\ \frac { dw }{ dx } { e }^{ 2x }=-2w{ e }^{ 2x }\\ \int { \frac { dw }{ dx } { e }^{ 2x } } dx=\int { -2w{ e }^{ 2x } } dx$$
Not sure what to do next.
Not sure what to do next.
Starting from dw/dx = -2w, you can use the method of separation, getting w and dw on one side, and x and dx on the other. You don't need an integration factor, since the equation is already separable.$$w'+2w=0\\ \frac { dw }{ dx } =-2w\\ I(x)={ e }^{ 2x }\\ \frac { dw }{ dx } { e }^{ 2x }=-2w{ e }^{ 2x }\\ \int { \frac { dw }{ dx } { e }^{ 2x } } dx=\int { -2w{ e }^{ 2x } } dx$$
Not sure what to do next.
I see you took the separating variables route. You made a mistake where I highlighted with ***, there are two negatives when there is only one : ##\frac { -1 }{ 2 } \int { \frac { -1 }{ w } dw } =\int { dx }##This first-order DE is actually the result of a reduction of a second-order DE:
$$y''-y=0\quad \quad \quad \quad \quad { y }_{ 1 }={ e }^{ x }\\ Let\quad { y }_{ 2 }=u(x){ e }^{ x }\\ Sub\quad { y }_{ 2 },\quad { y }_{ 2 }',\quad and\quad { y }_{ 2 }''\quad into\quad the\quad DE\\ { e }^{ x }{ u }''+2{ e }^{ x }u'=0\\ Let\quad w=u'\\ w'+2w=0\\ dw=-2wdx\\ \frac { -1 }{ 2w } dw=dx\\ \int { \frac { -1 }{ 2w } dw } =\int { dx } \\ ***\frac { -1 }{ 2 } \int { \frac { -1 }{ w } dw } =\int { dx }*** \\ Ignoring\quad c\quad for\quad now\\ \frac { -1 }{ 2 } ln|w|=x\\ |w|={ e }^{ -2x }\\ |\frac { du }{ dx } |={ e }^{ -2x }$$
I was wondering what I should do to proceed?