MHB Solving a Trigonometric Equation

AI Thread Summary
The equation tan^4(x) + tan^2(x) = sec^4(x) - sec^2(x) simplifies to an identity, meaning it holds true for all x in the domain. By rearranging and factoring, it can be shown that both sides are equal, confirming the identity. The manipulation involves using the relationship between tangent and secant, specifically that tan^2(x) + 1 = sec^2(x). Various approaches to solving or proving the identity were discussed, all leading to the same conclusion. The consensus is that the original equation is indeed an identity rather than a solvable equation.
thorpelizts
Messages
6
Reaction score
0
solve for

tan^4x + tan^2x = sec ^4x - sec^2x

i solved and ended up with RIHS= tan^4x?
 
Last edited by a moderator:
Mathematics news on Phys.org
re: Solving a Trignometric Equation

We are given to solve:

$\displaystyle \tan^4(x)+\tan^2(x)=\sec^4(x)-\sec^2(x)$

I would arrange as:

$\displaystyle \tan^4(x)-\sec^4(x)+\tan^2(x)+\sec^2(x)=0$

Factor:

$\displaystyle (\tan^2(x)+\sec^2(x))(\tan^2(x)-\sec^2(x))+\tan^2(x)+\sec^2(x)=0$

$\displaystyle (\tan^2(x)+\sec^2(x))((\tan^2(x)-\sec^2(x))+1)=0$

Now, since $\displaystyle \tan^2(x)+1=\sec^2(x)$ we have:

$\displaystyle 0=0$

which means the original equation is an identity, i.e., it is true for all values of x in the domain.

Were you supposed to prove the identity is true instead of solving the equation?
 
re: Solving a Trignometric Equation

yeah, thx
 
re: Solving a Trignometric Equation

thorpelizts said:
solve for

tan^4x + tan^2x = sec ^4x - sec^2x

i solved and ended up with RIHS= tan^4x?

If You apply the basic definitions the 'equation' becomes...

$\displaystyle \frac{\sin^{4} x}{\cos^{4} x} + \frac{\sin^{2} x}{\cos^{2} x} = \frac{1}{\cos^{4} x} - \frac{1}{\cos^{2} x} \implies \frac{\sin^{4} x-1}{\cos^{4} x} + \frac{\sin^{2} x+1}{\cos^{2} x}=0 \implies$

$\displaystyle \implies \frac{\sin^{2} x -1+ \cos^{2} x}{\cos^{4} x} =0 \implies \frac{0}{\cos^{4} x}=0$

... anf that is an identity, i.e. any x satisfies the 'equation'...

Kind regards

$\chi$ $\sigma$
 
re: Solving a Trignometric Equation

I like to begin with the left side, and try to manipulate it so that the right side results. I think I would first factor the left side to get:

$\displaystyle \tan^2(x)(\tan^2(x)+1)$

Now, use the Pythagorean identity $\displaystyle \tan^2(x)+1=\sec^2(x)$ and see where this leads you...
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top