MHB Solving a Trigonometric Equation

thorpelizts
Messages
6
Reaction score
0
solve for

tan^4x + tan^2x = sec ^4x - sec^2x

i solved and ended up with RIHS= tan^4x?
 
Last edited by a moderator:
Mathematics news on Phys.org
re: Solving a Trignometric Equation

We are given to solve:

$\displaystyle \tan^4(x)+\tan^2(x)=\sec^4(x)-\sec^2(x)$

I would arrange as:

$\displaystyle \tan^4(x)-\sec^4(x)+\tan^2(x)+\sec^2(x)=0$

Factor:

$\displaystyle (\tan^2(x)+\sec^2(x))(\tan^2(x)-\sec^2(x))+\tan^2(x)+\sec^2(x)=0$

$\displaystyle (\tan^2(x)+\sec^2(x))((\tan^2(x)-\sec^2(x))+1)=0$

Now, since $\displaystyle \tan^2(x)+1=\sec^2(x)$ we have:

$\displaystyle 0=0$

which means the original equation is an identity, i.e., it is true for all values of x in the domain.

Were you supposed to prove the identity is true instead of solving the equation?
 
re: Solving a Trignometric Equation

yeah, thx
 
re: Solving a Trignometric Equation

thorpelizts said:
solve for

tan^4x + tan^2x = sec ^4x - sec^2x

i solved and ended up with RIHS= tan^4x?

If You apply the basic definitions the 'equation' becomes...

$\displaystyle \frac{\sin^{4} x}{\cos^{4} x} + \frac{\sin^{2} x}{\cos^{2} x} = \frac{1}{\cos^{4} x} - \frac{1}{\cos^{2} x} \implies \frac{\sin^{4} x-1}{\cos^{4} x} + \frac{\sin^{2} x+1}{\cos^{2} x}=0 \implies$

$\displaystyle \implies \frac{\sin^{2} x -1+ \cos^{2} x}{\cos^{4} x} =0 \implies \frac{0}{\cos^{4} x}=0$

... anf that is an identity, i.e. any x satisfies the 'equation'...

Kind regards

$\chi$ $\sigma$
 
re: Solving a Trignometric Equation

I like to begin with the left side, and try to manipulate it so that the right side results. I think I would first factor the left side to get:

$\displaystyle \tan^2(x)(\tan^2(x)+1)$

Now, use the Pythagorean identity $\displaystyle \tan^2(x)+1=\sec^2(x)$ and see where this leads you...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top