MHB Solving an Integral with a Right Endpoint Riemann Sum

AI Thread Summary
The discussion focuses on solving the integral of the function f(t) = 1 from x to x^2 using the right endpoint Riemann sum. It establishes that the integral can be expressed as the limit of a sum, leading to the conclusion that the integral equals x^2 - x when x is less than x^2. For cases where x equals 0 or 1, the integral evaluates to 0. If x^2 is less than x, the integral is redefined as the negative of the integral from x^2 to x, confirming that the result remains x^2 - x for all real x. The analysis provides a comprehensive understanding of the integral's behavior across different intervals.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Turn the integral to a limit of the right endpoint Reimann sum?
1dt from x to x^2

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
In general, consider the interval $[a,b]$, and the partition
$$a,a+1\frac{b-a}{n},a+2\frac{b-a}{n},\ldots,a+n\frac{b-a}{n}$$
Then,
$$\int_a^bf(t)dt=\lim_{n\to +\infty}\sum_{k=1}^n\frac{b-a}{n}f\left(a+k\frac{b-a}{n}\right)$$
In our case $f(t)=1$ so,
$$\int_a^bf(t)dt=\lim_{n\to +\infty}\sum_{k=1}^n\frac{b-a}{n}=\lim_{n\to +\infty}
(b-a)=b-a$$
That is, $\displaystyle\int_x^{x^2}1dt=x^2-x$ (if $x<x^2$).

For $x^2-x=0$ i.e. $x=1$ or $x=0$ the integral is $0$. If $x^2<x$, use $\displaystyle\int_x^{x^2}1dt=-\displaystyle\int_{x^2}^{x}1dt$

Hence, $\displaystyle\int_x^{x^2}1dt=x^2-x$ for all $x\in\mathbb{R}$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top