- 2,180
- 0
\int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx
Here's what i have done
\int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx + \int \frac{- x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx
so
I_{1} = I_{2} + I_{3}
where
I_{1} = \int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx
I_{2} = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx
I_{3} = \int \frac{- x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx
Now,
I_{2} = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx
multiplying by \frac{\ln{y}}{\ln{y}}
I_{2} = \frac{\ln{y}}{\ln{y}} \int \frac{1}{\frac{1}{y} + x \ln {y}} dx
I_{2} = \frac{1}{\ln{y}} \int \frac{\ln{y}}{\frac{1}{y} + x \ln {y}} dx
Using substitution u = \frac{1}{y} + x \ln {y} and therefore du = \ln{y} dx
Now,
I_{2} = \frac{1}{\ln{y}} \int \frac{1}{u} du
I_{2} = \frac{1}{\ln{y}} \ln{|\frac{1}{y} + x \ln {y}|}
Any ideas about I_{3} or the whole integral?
Here's what i have done
\int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx + \int \frac{- x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx
so
I_{1} = I_{2} + I_{3}
where
I_{1} = \int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx
I_{2} = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx
I_{3} = \int \frac{- x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx
Now,
I_{2} = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx
multiplying by \frac{\ln{y}}{\ln{y}}
I_{2} = \frac{\ln{y}}{\ln{y}} \int \frac{1}{\frac{1}{y} + x \ln {y}} dx
I_{2} = \frac{1}{\ln{y}} \int \frac{\ln{y}}{\frac{1}{y} + x \ln {y}} dx
Using substitution u = \frac{1}{y} + x \ln {y} and therefore du = \ln{y} dx
Now,
I_{2} = \frac{1}{\ln{y}} \int \frac{1}{u} du
I_{2} = \frac{1}{\ln{y}} \ln{|\frac{1}{y} + x \ln {y}|}
Any ideas about I_{3} or the whole integral?