Solving Creation Operator Equation: Find Error in Calculation

  • Thread starter Thread starter Luke Tan
  • Start date Start date
  • Tags Tags
    Creation Operator
AI Thread Summary
The discussion revolves around solving the creation operator equation and identifying errors in the calculations. The initial equation presented is $$a^\dagger \lvert n\rangle = C_{n+1}\lvert n+1 \rangle$$, leading to a series of transformations that ultimately yield an incorrect conclusion about the constant $C_{n+1}$. Participants highlight the mistake of assuming $$aa^\dagger = a^\dagger a$$ due to their non-commuting nature, which is crucial for deriving the correct relationship. The correct approach incorporates the commutation relation, resulting in $$|C_{n+1}| = \sqrt{n+1}$$, clarifying the error in the original calculation. The discussion concludes with the correct identification of the creation operator's effect on the quantum state.
Luke Tan
Messages
29
Reaction score
2
Homework Statement
Show that ##a^\dagger\lvert n \rangle = \sqrt{n+1}\lvert n+1 \rangle##
(From Shankar, Principles of Quantum Mechanics, Chapter 8 - The Harmonic Oscillator)
Relevant Equations
##\hat{H}+\frac{1}{2}=aa^\dagger=a^\dagger a##
##\hat{H}\lvert n \rangle = (n+\frac{1}{2})\lvert n \rangle##
I have written the equation, with an unknown constant
$$a^\dagger \lvert n\rangle = C_{n+1}\lvert n+1 \rangle$$
I then take the adjoint to get
$$\langle n \rvert a = \langle n+1 \rvert C_{n+1}^\text{*}$$
I then multiply them to get
$$\langle n \rvert aa^\dagger \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$
On the left hand side, since ##aa^\dagger = \hat{H}-\frac{1}{2}##, the expression just simplifies to ##\langle n \rvert n \lvert n \rangle##. On the right hand side, since ##\lvert n+1 \rangle## is a normalized state, it just simplifies to ##|C_{n+1}|^2##. Thus, we arrive at
$$\langle n \rvert n \lvert n \rangle = |C_{n+1}|^2$$
$$n = |C_{n+1}|^2$$
$$C_{n+1}=\sqrt{n}$$.
Thus,
$$a^\dagger \lvert n \rangle = \sqrt{n} \lvert n+1 \rangle$$
Which is wrong.

I can't see where i went wrong. Can someone help?
 
Physics news on Phys.org
First error I see is where you wrote: aa^\dagger = a^\dagger a their commutator is not 0.
 
jambaugh said:
First error I see is where you wrote: aa^\dagger = a^\dagger a their commutator is not 0.

Would it make any difference?
From my equation

$$\langle n \rvert aa^\dagger \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$

Could i take the adjoint to get
$$\langle n \rvert a^\dagger a \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$

which would result in the same expression?
 
The number operator is self-adjoint (conjugate transpose). Yes it makes a big difference!
 
Luke Tan said:
Could i take the adjoint to get
That is wrong. The adjoint of ##a a^\dagger## is ##aa^\dagger##, not ##a^\dagger a##. Note that ##(ab)^\dagger = b^\dagger a^\dagger## for general a and b.
 
Oh i got the answer

We start from the original equation
$$a^\dagger \lvert n\rangle = C_{n+1}\lvert n+1 \rangle$$

We then take the adjoint to get
$$\langle n \rvert a = \langle n+1 \rvert C_{n+1}^\text{*}$$

Which we then combine to arrive at
$$\langle n \rvert aa^\dagger \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$

Since we know the commutator ##[a,a^\dagger]=aa^\dagger-a^\dagger a=1##, we can then derive ##aa^\dagger = 1 + a^\dagger a##. We then substitute this to get

$$\langle n \rvert 1 + a^\dagger a \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$

Which then simplifies to

$$\langle n \rvert \hat{H}+\frac{1}{2} \lvert n \rangle = |C_{n+1}|^2$$

Which evaluates to ##\langle n \rvert n+1 \lvert n \rangle = |C_{n+1}|^2##

Thus, we get ##|C_{n+1}|=\sqrt{n+1}##

Thanks everyone for the help!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top