Solving Creation Operator Equation: Find Error in Calculation

  • Thread starter Thread starter Luke Tan
  • Start date Start date
  • Tags Tags
    Creation Operator
Click For Summary
The discussion revolves around solving the creation operator equation and identifying errors in the calculations. The initial equation presented is $$a^\dagger \lvert n\rangle = C_{n+1}\lvert n+1 \rangle$$, leading to a series of transformations that ultimately yield an incorrect conclusion about the constant $C_{n+1}$. Participants highlight the mistake of assuming $$aa^\dagger = a^\dagger a$$ due to their non-commuting nature, which is crucial for deriving the correct relationship. The correct approach incorporates the commutation relation, resulting in $$|C_{n+1}| = \sqrt{n+1}$$, clarifying the error in the original calculation. The discussion concludes with the correct identification of the creation operator's effect on the quantum state.
Luke Tan
Messages
29
Reaction score
2
Homework Statement
Show that ##a^\dagger\lvert n \rangle = \sqrt{n+1}\lvert n+1 \rangle##
(From Shankar, Principles of Quantum Mechanics, Chapter 8 - The Harmonic Oscillator)
Relevant Equations
##\hat{H}+\frac{1}{2}=aa^\dagger=a^\dagger a##
##\hat{H}\lvert n \rangle = (n+\frac{1}{2})\lvert n \rangle##
I have written the equation, with an unknown constant
$$a^\dagger \lvert n\rangle = C_{n+1}\lvert n+1 \rangle$$
I then take the adjoint to get
$$\langle n \rvert a = \langle n+1 \rvert C_{n+1}^\text{*}$$
I then multiply them to get
$$\langle n \rvert aa^\dagger \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$
On the left hand side, since ##aa^\dagger = \hat{H}-\frac{1}{2}##, the expression just simplifies to ##\langle n \rvert n \lvert n \rangle##. On the right hand side, since ##\lvert n+1 \rangle## is a normalized state, it just simplifies to ##|C_{n+1}|^2##. Thus, we arrive at
$$\langle n \rvert n \lvert n \rangle = |C_{n+1}|^2$$
$$n = |C_{n+1}|^2$$
$$C_{n+1}=\sqrt{n}$$.
Thus,
$$a^\dagger \lvert n \rangle = \sqrt{n} \lvert n+1 \rangle$$
Which is wrong.

I can't see where i went wrong. Can someone help?
 
Physics news on Phys.org
First error I see is where you wrote: aa^\dagger = a^\dagger a their commutator is not 0.
 
jambaugh said:
First error I see is where you wrote: aa^\dagger = a^\dagger a their commutator is not 0.

Would it make any difference?
From my equation

$$\langle n \rvert aa^\dagger \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$

Could i take the adjoint to get
$$\langle n \rvert a^\dagger a \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$

which would result in the same expression?
 
The number operator is self-adjoint (conjugate transpose). Yes it makes a big difference!
 
Luke Tan said:
Could i take the adjoint to get
That is wrong. The adjoint of ##a a^\dagger## is ##aa^\dagger##, not ##a^\dagger a##. Note that ##(ab)^\dagger = b^\dagger a^\dagger## for general a and b.
 
Oh i got the answer

We start from the original equation
$$a^\dagger \lvert n\rangle = C_{n+1}\lvert n+1 \rangle$$

We then take the adjoint to get
$$\langle n \rvert a = \langle n+1 \rvert C_{n+1}^\text{*}$$

Which we then combine to arrive at
$$\langle n \rvert aa^\dagger \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$

Since we know the commutator ##[a,a^\dagger]=aa^\dagger-a^\dagger a=1##, we can then derive ##aa^\dagger = 1 + a^\dagger a##. We then substitute this to get

$$\langle n \rvert 1 + a^\dagger a \lvert n \rangle = \langle n+1 \rvert n+1 \rangle |C_{n+1}|^2$$

Which then simplifies to

$$\langle n \rvert \hat{H}+\frac{1}{2} \lvert n \rangle = |C_{n+1}|^2$$

Which evaluates to ##\langle n \rvert n+1 \lvert n \rangle = |C_{n+1}|^2##

Thus, we get ##|C_{n+1}|=\sqrt{n+1}##

Thanks everyone for the help!
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
28
Views
2K