Solving Curl A in Spherical Coordinates: Tips & Hints

phos19
Messages
6
Reaction score
0
Homework Statement
Let $$ \vec{B} =\dfrac{1}{4 \pi} \dfrac{-3}{r^4} ( 3\cos^2{\theta} - 1) \hat{u_r} + \dfrac{1}{4 \pi} \dfrac{1}{r^4} ( - 6 \cos{\theta} \sin{\theta} ) \hat{u_{\theta}} $$ (spherical unit vectors)


Find ##\vec{A}## such that ## \vec{B} = \nabla \times \vec{A}##
Relevant Equations
(The ##\vec{B}## is divergenceless !)
I've tried writing the curl A (in spherical coord.) and equating the components, but I end up with something that is beyond me:

\begin{equation}
{\displaystyle {\begin{aligned}{B_r = \dfrac{1}{4 \pi} \dfrac{-3}{r^4} ( 3\cos^2{\theta} - 1) =\frac {1}{r\sin \theta }}\left({\frac {\partial }{\partial \theta }}\left(A_{\varphi }\sin \theta \right)-{\frac {\partial A_{\theta }}{\partial \varphi }}\right)&\\B_{\theta}= \dfrac{1}{4 \pi} \dfrac{1}{r^4} ( - 6 \cos{\theta} \sin{\theta} ) ={}+{\frac {1}{r}}\left({\frac {1}{\sin \theta }}{\frac {\partial A_{r}}{\partial \varphi }}-{\frac {\partial }{\partial r}}\left(rA_{\varphi }\right)\right)&\\B_{\varphi}= 0={}+{\frac {1}{r}}\left({\frac {\partial }{\partial r}}\left(rA_{\theta }\right)-{\frac {\partial A_{r}}{\partial \theta }}\right)&\end{aligned}}}
\end{equation}

Is there a "trick" to solve this , or maybe some vector identity to simplify the problem ?
Any hints are greatly appreciated , thanks!
 
Last edited:
Physics news on Phys.org
You can assume that nothing depends on \phi, and the third equation is satisfied by A_r = A_\theta = 0. That leaves <br /> \begin{split}<br /> B_r &amp;= \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\phi \sin \theta) \\<br /> B_\theta &amp;= -\frac{1}{r} \frac{\partial}{\partial r} (r A_\phi) \end{split} and now substituting A_\phi = r^\alpha f(\theta) will solve the problem.
 
  • Like
Likes vanhees71, PhDeezNutz and topsquark
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top