Solving Curl A in Spherical Coordinates: Tips & Hints

phos19
Messages
6
Reaction score
0
Homework Statement
Let $$ \vec{B} =\dfrac{1}{4 \pi} \dfrac{-3}{r^4} ( 3\cos^2{\theta} - 1) \hat{u_r} + \dfrac{1}{4 \pi} \dfrac{1}{r^4} ( - 6 \cos{\theta} \sin{\theta} ) \hat{u_{\theta}} $$ (spherical unit vectors)


Find ##\vec{A}## such that ## \vec{B} = \nabla \times \vec{A}##
Relevant Equations
(The ##\vec{B}## is divergenceless !)
I've tried writing the curl A (in spherical coord.) and equating the components, but I end up with something that is beyond me:

\begin{equation}
{\displaystyle {\begin{aligned}{B_r = \dfrac{1}{4 \pi} \dfrac{-3}{r^4} ( 3\cos^2{\theta} - 1) =\frac {1}{r\sin \theta }}\left({\frac {\partial }{\partial \theta }}\left(A_{\varphi }\sin \theta \right)-{\frac {\partial A_{\theta }}{\partial \varphi }}\right)&\\B_{\theta}= \dfrac{1}{4 \pi} \dfrac{1}{r^4} ( - 6 \cos{\theta} \sin{\theta} ) ={}+{\frac {1}{r}}\left({\frac {1}{\sin \theta }}{\frac {\partial A_{r}}{\partial \varphi }}-{\frac {\partial }{\partial r}}\left(rA_{\varphi }\right)\right)&\\B_{\varphi}= 0={}+{\frac {1}{r}}\left({\frac {\partial }{\partial r}}\left(rA_{\theta }\right)-{\frac {\partial A_{r}}{\partial \theta }}\right)&\end{aligned}}}
\end{equation}

Is there a "trick" to solve this , or maybe some vector identity to simplify the problem ?
Any hints are greatly appreciated , thanks!
 
Last edited:
Physics news on Phys.org
You can assume that nothing depends on \phi, and the third equation is satisfied by A_r = A_\theta = 0. That leaves <br /> \begin{split}<br /> B_r &amp;= \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\phi \sin \theta) \\<br /> B_\theta &amp;= -\frac{1}{r} \frac{\partial}{\partial r} (r A_\phi) \end{split} and now substituting A_\phi = r^\alpha f(\theta) will solve the problem.
 
  • Like
Likes vanhees71, PhDeezNutz and topsquark
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top