Graduate Solving Equation 15.43 Line 2 to 3 in Tevian Dray's Differential Forms

Click For Summary
The discussion centers on the transition from line 2 to line 3 in equation 15.43 of Tevian Dray's book, where the equality is implied. A participant expresses difficulty in understanding the notation but clarifies their confusion regarding the properties of forms, specifically that if α is a one-form, then dα is a two-form, leading to the relationship dα ∧ β = β ∧ dα. The conversation also touches on the product rule for exterior derivatives, highlighting the potential for a minus sign in the expression d(ω ∧ η). Ultimately, the exchange helps clarify the mathematical concepts involved in the equation.
gnnmartin
Messages
86
Reaction score
5
TL;DR
In 15.43 he implies dα ∧ β = β ∧ dα where α,β are one forms.
I expected dα ∧ β = −β ∧ dα. Am I misreading the text, or have I simply lost the plot?
The equality is implied in the move from equation 15.43 line 2 to line 3.

I do find Dray's book is admirably clear and absolutely says something I wish to understand, but my 78 year old brain has difficulty. However, in this case I can be precise about where I fail to follow.

Oh! I find after all, writing this has enabled me to see my mistake, but I'll post the question all the same so that some kind person can confirm where I went wrong. If α is a one form, dα is a two form, so dα ∧ β = −−β ∧ dα = β ∧ dα.
 
Physics news on Phys.org
Note that ##d\alpha## is a 2-form if ##\alpha## is a 1-form. In general, if ##\omega## and ##\eta## are ##p##- and ##q##-forms, respectively, then
$$
\omega\wedge\eta = (-1)^{p q} \eta \wedge\omega.
$$

Here you have ##p=2## and ##q=1## so ##(-1)^{p q} = (-1)^2 = +1##.

gnnmartin said:
Oh! I find after all, writing this has enabled me to see my mistake, but I'll post the question all the same so that some kind person can confirm where I went wrong. If α is a one form, dα is a two form, so dα ∧ β = −−β ∧ dα = β ∧ dα.
Indeed.
 
Thanks.
 
Comment regarding a somewhat different but related issue that someone reading this in the future might also encounter:

Note that the exterior derivative of the product ##\omega \wedge \eta## also has a potential minus sign popping up when applying the product rule:
$$
d(\omega\wedge\eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge d\eta
$$
 
Orodruin said:
Comment regarding a somewhat different but related issue that someone reading this in the future might also encounter:

Note that the exterior derivative of the product ##\omega \wedge \eta## also has a potential minus sign popping up when applying the product rule:
$$
d(\omega\wedge\eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge d\eta
$$
Thanks, yes, it was not immediately obvious to me, but given the prompt I can see it.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
Replies
3
Views
3K