Solving Equation: $2^{|x+2|}-|2^{x+1}-1|=2^{x+1}+1$

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
Click For Summary
SUMMARY

The equation \(2^{|x+2|}-|2^{x+1}-1|=2^{x+1}+1\) has been solved with definitive intervals for \(x\). For \(x \geq -1\), the equation holds true for all values, resulting in the solution set \([-1, \infty)\). For the interval \(-2 \leq x < -1\), there are no solutions, while for \(x < -2\), the solution is \(x = -3\). Thus, the complete solution set is \([-1, \infty) \cup \{-3\}\).

PREREQUISITES
  • Understanding of absolute value functions
  • Familiarity with exponential equations
  • Knowledge of piecewise functions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of absolute value functions in equations
  • Learn about solving exponential equations
  • Explore piecewise function applications in mathematical modeling
  • Practice algebraic manipulation techniques for complex equations
USEFUL FOR

Mathematics students, educators, and anyone interested in solving complex equations involving absolute values and exponentials.

sbhatnagar
Messages
87
Reaction score
0
Solve the equation

$$2^{|x+2|}-|2^{x+1}-1|=2^{x+1}+1$$
 
Mathematics news on Phys.org
sbhatnagar said:
Solve the equation

$$2^{|x+2|}-|2^{x+1}-1|=2^{x+1}+1$$

Hi sbhatnagar, :)

\[|2^{x+1}-1| = \begin{cases}2^{x+1}-1 & \mbox{if } x \geq -1 \\\\ -2^{x+1}+1 & \mbox{if } x <-1 \end{cases}\]

\[|x+2|=\begin{cases}x+2 & \mbox{if } x \geq -2 \\\\ -x-2 & \mbox{if } x <-2 \end{cases}\]

Therefore when \(x\geq -1\) considering the left hand side of the equation we can obtain the right hand side.

\[2^{x+2}-2^{x+1}+1=2.2^{x+1}-2^{x+1}+1=2^{x+1}+1\]

That is the equation satisfies for each \(x\geq -1\).

When \(-2\leq x<-1\) we have,

\[2^{x+2}+2^{x+1}-1=2^{x+1}+1\]

\[\Rightarrow 2^{x+2}=2\]

Therefore the equation does not have a solution when \(-2\leq x<-1\).

When \(x<-2\),

\[2^{-x-2}+2^{x+1}-1=2^{x+1}+1\]

\[\Rightarrow 2^{-x-2}=2\]

\[\therefore x=-3\]

So the final solution is, \(x=[-1,\infty)\cup\{-3\}\)

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K