If I have not screwed something up (and since I am recovering from knee surgery and have some pain meds in me, I might have) you can write
x=-\frac{\sqrt{{\left( \frac{n-2}{2}\right) !}^{2}\,{\left( \frac{n}{2}\right) !}^{2}+4\,\left( \frac{n-2}{2}\right) !\,\left( n-1\right) !\,\left( \frac{n}{2}\right) !}+\left( \frac{n-2}{2}\right) !\,\left( \frac{n}{2}\right) !}{2\,\left( \frac{n-2}{2}\right) !\,\left( \frac{n}{2}\right) !}
or
x=\frac{\sqrt{{\left( \frac{n-2}{2}\right) !}^{2}\,{\left( \frac{n}{2}\right) !}^{2}+4\,\left( \frac{n-2}{2}\right) !\,\left( n-1\right) !\,\left( \frac{n}{2}\right) !}-\left( \frac{n-2}{2}\right) !\,\left( \frac{n}{2}\right) !}{2\,\left( \frac{n-2}{2}\right) !\,\left( \frac{n}{2}\right) !}