MHB Solving for A and B in p(x) and q(x) to prove A²+3B²=4

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around proving that for the polynomials p(x) and q(x), the equation A² + 3B² = 4 holds, where A and B are the largest roots of p(x) and q(x), respectively. Participants clarify that cubic polynomials with real coefficients always have at least one real root, countering the notion that the roots could be complex. A detailed approach is provided, showing that the roots of transformed polynomials lead to the conclusion that 4 - A² must equal one of the transformed roots of q(x). Ultimately, it is established that A² + 3B² does indeed equal 4, confirming the original problem statement. The discussion concludes with appreciation for the collaborative problem-solving effort.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Problem:
$$p(x)=4x^3-2x^2-15x+9$$
$$q(x)=12x^3+6x^2-7x+1$$

Let A be the largest root of $$p(x)$$ and B the largest root of $$q(x)$$. Show that $$A^2+3B^2=4$$

Hi all, this problem seems to be a little harder than usual for me and I hope someone will give me hint on how to solve it...

Thanks in advance. :)
 
Mathematics news on Phys.org
Re: Prove that A²+3B²=4.

Hi, I'm not so sure on this one, but the root of p(x) and q(x)
are Complex.

I don't think we can compare complexe number so there is no ''Largest Root''

I'm not 100% certain about this.

Hopefully someone will confirm or show me wrong!
 
Re: Prove that A²+3B²=4.

Barioth said:
Hi, I'm not so sure on this one, but the root of p(x) and q(x)
are Complex.

I don't think we can compare complexe number so there is no ''Largest Root''

I'm not 100% certain about this.

Hopefully someone will confirm or show me wrong!

Cubics with real coefficients always have at least one real root, on account of the Intermediate Value Theorem, and the behavior of the fastest-growing term $x^{3}$.
 
Re: Prove that A²+3B²=4.

anemone said:
Problem:
$$p(x)=4x^3-2x^2-15x+9$$
$$q(x)=12x^3+6x^2-7x+1$$

Let A be the largest root of $$p(x)$$ and B the largest root of $$q(x)$$. Show that $$A^2+3B^2=4$$

Hi all, this problem seems to be a little harder than usual for me and I hope someone will give me hint on how to solve it...

Thanks in advance. :)
You're right, this looks like an unusually hard problem. I have a sort of solution, but I don't believe it can be the best one.

If $\alpha,\ \beta,\ \gamma$ are the roots of $x^3 - px^2 + qx - r$, then the polynomial whose roots are $\alpha^2,\ \beta^2,\ \gamma^2$ is $x^3 - (p^2-2q)x^2 + (q^2-2pr)x - r^2$. The polynomial whose roots are $3\alpha,\ 3\beta,\ 3\gamma$ is $x^3 - 3px^2 + 9qx - 27r$; and the polynomial whose roots are $4-\alpha,\ 4-\beta,\ 4-\gamma$ is $(4-x)^3 -p(4-x)^2 + q(4-x) - r.$ Using those techniques, you can check that if $A,\ A',\ A''$ are the roots of $4x^3-2x^2-15x+9$, then the polynomial with roots $4-A^2, 4-A'^2, 4-A''^2$ is $x^3 - \frac{17}4x^2 + \frac{37}{16}x -\frac3{16}$. If $B,\ B',\ B''$ are the roots of $12x^3 + 6x^2 - 7x + 1$, then the polynomial with roots $3B^2, 3B'^2, 3B''^2$ is exactly the same: $x^3 - \frac{17}4x^2 + \frac{37}{16}x -\frac3{16}$.

This shows that $4-A^2$ must be one of $3B^2, 3B'^2, 3B''^2$, but it doesn't tell you which of those three it is. You know for example that $B$ is the largest root of the polynomial $q(x)$, but that does not mean that $B^2$ is the largest root of the polynomial with roots $3B^2, 3B'^2, 3B''^2$. In fact, each of the given polynomials $p(x)$, $q(x)$ has a negative root that is larger than either of its positive roots. So when you square the roots, the negative root has the largest square. This means that the middle root of $x^3 - \frac{17}4x^2 + \frac{37}{16}x -\frac3{16}$ is the one that is equal to $4-A^2$ and $3B^2$, from which it follows that $A^2+3B^2=4.$

Afterthought: bad notation! After writing this out, I realized that I should not have used the letters $p,\ q,\ r$ for the coefficients in a cubic polynomial, because the given polynomials $p(x)$ and $q(x)$ already used the letters $p$ and $q$.
 
Last edited:
Re: Prove that A²+3B²=4.

I finally understand how to solve it now! Thanks again, Opalg for this wonderful approach and I deeply appreciate the time and effort you've spent on solving this problem for me! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
7
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
4
Views
1K
Replies
8
Views
1K
Replies
2
Views
2K
Replies
9
Views
3K
Back
Top