Solving for potential using surface charge density of a sphere

AI Thread Summary
The discussion focuses on calculating the electric field and potential of a charged sphere using surface charge density. The initial formulas presented for electric field strength contain errors, particularly a factor of 2 discrepancy. The correct formula for the electric field at the surface of a conductor in electrostatic equilibrium is E = σ/ε₀, while E = ρ/(2ε₀) applies to an infinite plane with uniform surface charge density. Clarification is sought regarding the appropriate use of these formulas in different contexts. Accurate understanding of these principles is crucial for solving related electrostatic problems.
BuggyWungos
Messages
13
Reaction score
1
Homework Statement
I'm trying to solve for the potential of a charged copper sphere with only radius and electric field strength known. The field lines are directed into the sphere.
Radius of the sphere: 0.2 m
Electric Field Strength at the surface of the sphere: 3800 N/C
Answer = half of my solution's value.
Relevant Equations
rho = Q/A
Surface area = 4pi(r^2)
Electric Field strength = rho/2(epsilon nought) OR kQ/r^2
Electric potential = kQ/r
surfafce area = 0.502

E = -q/A2(en) = 3800
-q = 3800*(A2(en))
-q = 1.68*10^(-8)
-q = 3.37*10^(-8)

V = kq/r
V = (9.0*10^9)(-3.37*10^(-8))/0.2
V = -1519 V
 
Physics news on Phys.org
BuggyWungos said:
Electric Field strength = rho/2(epsilon nought)
This is not the correct formula for the electric field at the surface. This is where your mistake of a factor of 2 occurs.
 
TSny said:
This is not the correct formula for the electric field at the surface. This is where your mistake of a factor of 2 occurs.
What is the correct electric field strength formula using rho? I understand that E = rho/(epsilon nought) would give the correct answer, but the formula I was given in my textbook was E = 2(pi)k(rho), which would simplify to E = rho/2(epsilon nought). Is the above formula used for another situation?
 
BuggyWungos said:
What is the correct electric field strength formula using rho? I understand that E = rho/(epsilon nought) would give the correct answer, but the formula I was given in my textbook was E = 2(pi)k(rho), which would simplify to E = rho/2(epsilon nought). Is the above formula used for another situation?
##E= \dfrac{ \sigma}{2 \varepsilon_0}## gives the field of an infinite plane with uniform surface charge density ##\sigma##. (The symbol ##\rho## is more often used for a volume charge density rather than a surface charge density.)

The field at a point just outside the surface of a conductor in electrostatic equilibrium is ##E=\dfrac{\sigma}{\varepsilon_0}##. This can be derived using Gauss’ law.
 
Last edited:
  • Like
Likes BuggyWungos
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top