Solving for Rotational Kinetic Energy with Angular Speed and Masses

Click For Summary
SUMMARY

The discussion centers on calculating rotational kinetic energy and angular momentum for a student on a piano stool rotating with an initial angular speed of 29.5 rps while holding two 1.25 kg masses. The moment of inertia of the student and stool, excluding the masses, is given as 5.430 kg·m². The participants explore the implications of the conservation of angular momentum and the work-energy theorem, ultimately questioning the validity of the initial angular speed and the resulting calculations for the distance of the masses from the axis of rotation.

PREREQUISITES
  • Understanding of rotational dynamics and angular momentum
  • Familiarity with the work-energy theorem in rotational motion
  • Knowledge of moment of inertia calculations
  • Basic principles of conservation of angular momentum
NEXT STEPS
  • Study the calculation of moment of inertia for composite systems
  • Learn about the relationship between angular speed and radius in rotational systems
  • Explore the implications of conservation laws in rotational motion
  • Investigate the effects of external torque on angular momentum
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and rotational dynamics, as well as educators looking to clarify concepts related to angular momentum and kinetic energy in rotational systems.

M98Ranger
Messages
1,668
Reaction score
0
I have a question about this question that I hope someone can answer.

QUESTION: "A student on a piano stool rotates freely with an angular speed of 29.5rps. The student holds a 1.25 kg mass in each outstretched arm, .759m from the axis of rotation. The combined moment of Inertia of the student and the stool (ignoring the two masses) is 5.430kg.m^2 (a value that remains constant).

a.) As the student's arm are pull inward the angular speed is 3.54 rps. Determine the distance the masses are from the axis of rotation at this time (consider the masses to be modeled a mass-points).<I KNOW THE ENGLISH IS CHOPPED UP, BUT THIS IS HOW IT WAS WRITTEN ON THE PAPER.>

b.)Calculate KEfinal\KEINITIAL

MY THOUGHT PROCESS: This seems to me that the answers lie in utilizing the work-energy theorem which says that the net work done by external forces in a rotating rigid object about a fixed axis equals the change in the object's rotational energy. ie

(.5*IW^2)final-.5*IW^2)initial=Sum of Work
Where I=moment of inertia of an extended rigid object and W=instantaneous angular speed

To get radius (r) we know that W*r=tangential Velocity
we also know that I=m*r^2

MY questions:
-I don't understand how you can "ignore the two masses" in the calculation of I to get 5.430kg.m^2.
-How do I find the I of the whole system if the 2 masses are ignored
-Do I need to find the tangential velocity value of angular speed in order to find the R?
-If so, how would I go about doing it?

Thanks for reading this. Hopefully somebody can make sense of all this.
 
Physics news on Phys.org
The PERSON's I is 5.43 [kgm^2] ... the TOTAL I is I_person + I_masses .
I_masses will depend on their distance from the rotation axis.

the person is on a "piano stool" so that the EXTERNAL torque is small.
That is, Angular momentum is conserved while the masses move inward.

Find the initial angular momentum, then the final angular speed ...
KE = 1/2 L omega ... (just like KE = 1/2 p v for linear motion).
 
You said find the initial angular momentum and then find the final angular speed, but I thought that it gives you the final angular speed of 3.54rps. Maybe I am totally confused though.

here is what I did, but my answer is all messed up. I got 13.73 meters as my radius for my masses. Here goes...
Ip+Imasses= Itotal(initial)--->5.430[kg.m^2]+2*(1.25kg)*(.759m)^2=6.8702[kg.m^2] then, (IF X = the final I of the masses as they are brought in)
(.5*LW)initial=(.5*LW)final--->
(.5)*(6.87[kg.m^2])*(29.5rps)^2=(.5)(5.430+X[kg.m^2])(3.54rps)^2-->
X=471.667[kg.m^2] then, (IF 2mr^2 = X)
2*m*r^2=471.667[kg.m^2] | m=1.25kg
r=13.736meters...Pretty LONG arms, so where did I go wrong.
I am not understanding what you mean obviously when you said "find the initial angular momentum, then the final angular speed"

Thanks for the explanation thus far. It helped me tremendously.
 
Last edited:
M98Ranger said:
I have a question about this question that I hope someone can answer.

QUESTION: "A student on a piano stool rotates freely with an angular speed of 29.5rps.
Wow, he/she must be dizzy!
The student holds a 1.25 kg mass in each outstretched arm, .759m from the axis of rotation. The combined moment of Inertia of the student and the stool (ignoring the two masses) is 5.430kg.m^2 (a value that remains constant).

a.) As the student's arm are pull inward the angular speed is 3.54 rps.
there is something fishy. The number of rotation per second should *increase* as the mass are pulled inward.
Determine the distance the masses are from the axis of rotation at this time (consider the masses to be modeled a mass-points).<I KNOW THE ENGLISH IS CHOPPED UP, BUT THIS IS HOW IT WAS WRITTEN ON THE PAPER.>

b.)Calculate KEfinal\KEINITIAL

MY THOUGHT PROCESS: This seems to me that the answers lie in utilizing the work-energy theorem which says that the net work done by external forces in a rotating rigid object about a fixed axis equals the change in the object's rotational energy. ie

(.5*IW^2)final-.5*IW^2)initial=Sum of Work
Where I=moment of inertia of an extended rigid object and W=instantaneous angular speed

To get radius (r) we know that W*r=tangential Velocity
we also know that I=m*r^2

MY questions:
-I don't understand how you can "ignore the two masses" in the calculation of I to get 5.430kg.m^2.
-How do I find the I of the whole system if the 2 masses are ignored
-Do I need to find the tangential velocity value of angular speed in order to find the R?
-If so, how would I go about doing it?

Thanks for reading this. Hopefully somebody can make sense of all this.
there is no work done (no extrenal force acts on the system assuming that the friction force on the stool is negligibe.

Just calculate the initial K energy (using I_total = I_stool+student + I_masses) (the I of the two masses is just m* distance from the axis of rotation). This is a number you know.

Now, the final KE will contain one unknown: the distance at which the masses are. You can solve for this
 
M98Ranger said:
You said find the initial angular momentum and then find the final angular speed, but I thought that it gives you the final angular speed of 3.54rps. Maybe I am totally confused though.

here is what I did, but my answer is all messed up. I got 13.73 meters as my radius for my masses. Here goes...
Ip+Imasses= Itotal(initial)--->5.430[kg.m^2]+2*(1.25kg)*(.759m)^2=6.8702[kg.m^2] then, (IF X = the final I of the masses as they are brought in)
(.5*LW)initial=(.5*LW)final--->
(.5)*(6.87[kg.m^2])*(29.5rps)^2=(.5)(5.430+X[kg.m^2])(3.54rps)^2-->
X=471.667[kg.m^2] then, (IF 2mr^2 = X)
2*m*r^2=471.667[kg.m^2] | m=1.25kg
r=13.736meters...obviously not possible so where did I go wrong.
I am not understanding what you mean obviously when you said "find the initial angular momentum, then the final angular speed"

Thanks for the explanation thus far. It helped me tremendously.
looks like you did it right (normally, omega should be put in radians per second not left in rps...here by luck it does not matter since it cancels out..but watch out for this in general).

The reason you get a larger value is that the values given in the initial question don't make sense. It would make much more sense if the initial value was 2.95 rps, not 29.5.
 
EXACTLY WHAT I WAS THINKING... now I feel better that somebody else was thinking that it didn't make sense. I wish my teacher would proof homework before he gives it out to students.
Thanks for all your help.
 
Last edited:

Similar threads

Replies
9
Views
3K
  • · Replies 21 ·
Replies
21
Views
5K
  • · Replies 33 ·
2
Replies
33
Views
3K
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K