Solving for the Kinetic Energy of a Uniform Disk

AI Thread Summary
The discussion focuses on calculating the total kinetic energy of a solid uniform disk rolling without slipping and determining the minimum height of a step that prevents it from rolling past. The total kinetic energy is derived from both translational and rotational components, with the correct total calculated as 0.444 Joules. To find the height of the step, energy conservation principles are applied, leading to the equation h = Vo^2 / (2g), where Vo represents the initial velocity. The importance of including both translational and rotational kinetic energy in the calculations is emphasized. The discussion highlights the need for careful application of energy conservation in solving the problem.
kenricktan
Messages
3
Reaction score
0

Homework Statement


A solid, Uniform disk of radius 5.00 cm and mass 1.50 kg is rolling without slipping a long a horizontal surface. The disk makes 2.00 revolution per second

a. Find the total kinetic energy (translational + rotational) of the disk

b. Find the minimum height h of the step (placed in front of the rolling disk) that will prevent the disk from rolling past it. (Hint: assume that the hight h is adjusted so that the disk rolls just up to the top of the step and stops. Conserve Energy)


Homework Equations


W= 2.00 Revolution x 2pi radian
V = wr
I = (1/2)mr^2
KE_rot = (1/2)Iw^2
KE = (1/2)mv^2


The Attempt at a Solution


a. I assumed that K_total = KE_rot + KE
K_total = 4.46 x 10^-3 Joules

b. I have no Idea how to solve this...help?
 
Physics news on Phys.org
Correction!
a. K_Total = 0.444 J
 
The height must be such that energy will be conserved between the initial translational and rotational velocity and the final trans/rot velocity. Ktotal(0) + U(0) = Ktotal(1) + U(1)

I'd begin by drawing a picture. What does the final total Kinetic energy have to be?
 
I tried using 1/2 m Vo^2 + mgh(o) = 1/2 m V1^2 + mgh(1)

and since it says that assuming that it "stops" at the top of the step so I set V1 = 0
and also h(o) = 0

cancels all of the m
so I get h1 = Vo^2 / 2g
Is that right?
 
kenricktan said:
I tried using 1/2 m Vo^2 + mgh(o) = 1/2 m V1^2 + mgh(1)

OK let's stop right here for a sec. 1/2 * Vo^2 is the translational kinetic energy, but you also need to include the rotational kinetic energy because the object is rotating as well as moving forward.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top