mmzaj
- 107
- 0
what is the solution for y in this peculiar ODE ?
A\left(y,x\right)=\frac{dy}{dx}+B(x)(1-y)
with initial conditions :
\frac{dy}{dx}=\left0 \ldots , y=0
\frac{dy}{dx}=\delta(x-x_{0})\ldots,y=1
moreover
\int^{\infty}_{-\infty}Adx=\int^{\infty}_{-\infty}Bdx=1
A\left(y,x\right)=\frac{dy}{dx}+B(x)(1-y)
with initial conditions :
\frac{dy}{dx}=\left0 \ldots , y=0
\frac{dy}{dx}=\delta(x-x_{0})\ldots,y=1
moreover
\int^{\infty}_{-\infty}Adx=\int^{\infty}_{-\infty}Bdx=1