matematikuvol
- 190
- 0
Eq
u'(x)+p(x)u=f(x)
with initial condition u(0)=0
It's homogenous solution is
u_h=Ce^{-\int^x_0 p(s)ds}
Complete solution
u(x)=e^{-\int^x_0 p(s)ds}\int^x_0f(s)e^{\int^s_0 p(z)dz}ds=\int^x_0 f(s)g(x,s)ds
where g(x,s)=e^{-\int^{x}_s p(\xi)d \xi }
I didn't see that last step from here u(x)=e^{-\int^x_0 p(s)ds}\int^x_0f(s)e^{\int^s_0 p(z)dz}ds to \int^x_0 f(s)g(x,s)ds here.
Can you explain me this?
u'(x)+p(x)u=f(x)
with initial condition u(0)=0
It's homogenous solution is
u_h=Ce^{-\int^x_0 p(s)ds}
Complete solution
u(x)=e^{-\int^x_0 p(s)ds}\int^x_0f(s)e^{\int^s_0 p(z)dz}ds=\int^x_0 f(s)g(x,s)ds
where g(x,s)=e^{-\int^{x}_s p(\xi)d \xi }
I didn't see that last step from here u(x)=e^{-\int^x_0 p(s)ds}\int^x_0f(s)e^{\int^s_0 p(z)dz}ds to \int^x_0 f(s)g(x,s)ds here.
Can you explain me this?