Solving Ideals in Q[x,y]: Cox et al Chapter 1 Section 4

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the equality of ideals in the polynomial ring $$ \mathbb{Q}[x,y] $$, specifically showing that $$ \langle x+y, x-y \rangle = \langle x, y \rangle $$. The solution provided demonstrates that any element of the ideal generated by $$ x+y $$ and $$ x-y $$ can be expressed in terms of the generators $$ x $$ and $$ y $$, confirming the inclusion $$ \langle x+y, x-y \rangle \subseteq \langle x, y \rangle $$. The reverse inclusion is established by expressing elements of $$ \langle x, y \rangle $$ in terms of $$ x+y $$ and $$ x-y $$ using coefficients from $$ \mathbb{Q} $$, specifically $$ h_1 = \frac{1}{2}(h_3+h_4) $$ and $$ h_2 = \frac{1}{2}(h_3-h_4) $$, which is not valid in $$ \mathbb{Z}[x,y] $$.

PREREQUISITES
  • Understanding of ideals in polynomial rings, specifically $$ \mathbb{Q}[x,y] $$
  • Familiarity with the notation and operations involving polynomial expressions
  • Knowledge of the concept of generators of ideals
  • Basic understanding of rational numbers and their properties in algebra
NEXT STEPS
  • Study the properties of ideals in polynomial rings, focusing on $$ \mathbb{Q}[x,y] $$
  • Learn about the differences in ideal generation between $$ \mathbb{Q}[x,y] $$ and $$ \mathbb{Z}[x,y] $$
  • Explore the concept of Gröbner bases and their applications in ideal theory
  • Investigate the implications of using different coefficient fields in polynomial rings
USEFUL FOR

Mathematicians, algebraists, and students studying commutative algebra, particularly those interested in polynomial ideals and their properties in different coefficient rings.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Chapter 1, Section 4, Cox et al "Ideals, Varieties and Algorithms"

Exercise 3(a) reads as follows:

In $$ \mathbb{Q}[x,y] $$ show the following equality of ideals:

<x + y, x - y > = <x, y>

I would appreciate help with this problem.

====================================================

My 'solution' (of which I am most unsure!) is as follows:

Idea generated by x + y, x - y is the ideal

$$ h_1 ( x + y) + h_2 (x - y)$$ where $$ h_1, h_2 \in \mathbb{Q}[x,y] $$

Ideal generated by x, y is the ideal

$$ h_3 x + h_4 y $$ where $$ h_3, h_4 \in \mathbb{Q}[x,y] $$

So

$$ h_1(x + y) + h_2 (x - y) = h_1x + h_1y + h_2x - h_2y $$

$$ = (h_1 + h_2)x + (h_1 - h_2)y $$

$$ = h_3x + h_4y $$

$$ <x,y> $$

Can someone please either correct this reasoning or confirm that is is correct/adequate.

Peter

[This is also posted on MHF]
 
Physics news on Phys.org
Your equation $$\begin{aligned} h_1(x + y) + h_2 (x - y) &= h_1x + h_1y + h_2x - h_2y \\ &= (h_1 + h_2)x + (h_1 - h_2)y \\ &= h_3x + h_4y \end{aligned}$$ shows that every element $h_1(x + y) + h_2 (x - y)$ in the ideal $\langle x+y,x-y\rangle$ generated by $x+y$ and $x-y$ can be expressed in the form $h_3x + h_4y$, where $h_3 = h_1+h_2$ and $h_4 = h_1-h_2$. This shows that $\langle x+y,x-y\rangle \subseteq \langle x,y\rangle.$

So far, so good. To show the reverse inclusion, you must start with an element $h_3x + h_4y \in \langle x,y\rangle$ and express it in the form $h_1(x + y) + h_2 (x - y)$. Your equation shows that this can be done by taking $h_1 = \frac12(h_3+h_4)$ and $h_2 = \frac12(h_3-h_4)$. What you omitted from your solution was to point out that this works, because the fraction $\frac12$ is in $\mathbb{Q}$.

Notice that if the question had asked you to show the same result in $\mathbb{Z}[x,y]$ then it would no longer have been correct, because the fraction $\frac12$ is not available in $\mathbb{Z}.$
 
Opalg said:
Your equation $$\begin{aligned} h_1(x + y) + h_2 (x - y) &= h_1x + h_1y + h_2x - h_2y \\ &= (h_1 + h_2)x + (h_1 - h_2)y \\ &= h_3x + h_4y \end{aligned}$$ shows that every element $h_1(x + y) + h_2 (x - y)$ in the ideal $\langle x+y,x-y\rangle$ generated by $x+y$ and $x-y$ can be expressed in the form $h_3x + h_4y$, where $h_3 = h_1+h_2$ and $h_4 = h_1-h_2$. This shows that $\langle x+y,x-y\rangle \subseteq \langle x,y\rangle.$

So far, so good. To show the reverse inclusion, you must start with an element $h_3x + h_4y \in \langle x,y\rangle$ and express it in the form $h_1(x + y) + h_2 (x - y)$. Your equation shows that this can be done by taking $h_1 = \frac12(h_3+h_4)$ and $h_2 = \frac12(h_3-h_4)$. What you omitted from your solution was to point out that this works, because the fraction $\frac12$ is in $\mathbb{Q}$.

Notice that if the question had asked you to show the same result in $\mathbb{Z}[x,y]$ then it would no longer have been correct, because the fraction $\frac12$ is not available in$\mathbb{Z}.$
Thanks OpalgReally appreciate your help
Peter
 

Similar threads

Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K