I've found a possible solution, but I'm a bit dubious, could you please check it?
1st situation: $0<a<1$
##\displaystyle \lim_{x \to +\infty} (\frac{a^x-1}{x(a-1)})^{\frac{1}{x}}=\displaystyle \lim_{x \to +\infty} e^{\frac{1}{x}log(\frac{a^x-1}{x(a-1)})}##
If ## \lim log(f(x)) = L## then ##\lim f(x) = e^L##
##=\frac{1}{+\infty} log(\frac{-1}{-\infty})(=\frac{-\infty}{+\infty})##
With de l'Hopital
##\stackrel{\text{H}}{=} \frac{x(a-1)}{a^x-1} \frac{x a^x log(a) (a-1) - (a-1) (a^x-1)}{x^2 (a-1)^2}$ = $\frac{x a^x log(a) - (a^x-1)}{(a^x-1)x}##
= ##\frac{a^xloga}{a^x-1}-\frac{1}{x}##
##= \frac{0}{-1}-0=0##
## e^0 = 1##
Situation 2: $a>1$
##\displaystyle \lim_{x \to +\infty} e^{\frac{1}{x}log(\frac{a^x-1}{x(a-1)})}=##
## =e^{ 0* log (\frac{\infty}{\infty})}##
I use de l'Hopital within the log (am I allowed to do this?)
##\displaystyle \lim_{x \to +\infty} \frac{1}{x}log(\frac{a^x loga}{a-1})## = ##\frac{\infty}{\infty}##
de l'Hospital again
##\displaystyle \lim_{x \to +\infty} \frac{a-1}{a^x loga} \frac{a^xlog^2a+0-0}{(a-1)^2}$ = $\frac{loga}{a-1}##
##=e^{\frac{loga}{a-1}}##
I didn't want to use the known limit = ##\frac{a^x-1}{x}=loga## because x had to go to 0 to apply that, while here it doesn't.