hogrampage
- 107
- 1
I do not understand the following integral:
\int^{\infty}_{0}2e^{2+jωt}dt = \frac{j2e^{2}}{\omega}
Why is it not ∞? Here are my steps:
Let u = 2+jωt, du = jωdt, dt = \frac{1}{jω}du = -\frac{j}{ω}du
\int^{\infty}_{0}2e^{2+jωt}dt
= -\frac{2j}{ω}\int^{\infty}_{2}2e^{u}du
= -\frac{2j}{ω}\stackrel{lim}{h\rightarrow∞}\int^{h}_{2}2e^{u}du
= -\frac{2j}{ω}\stackrel{lim}{h\rightarrow∞}(e^{h}-e^{2})
To me, this limit does not exist, so why is the answer \frac{j2e^{2}}{\omega}?
\int^{\infty}_{0}2e^{2+jωt}dt = \frac{j2e^{2}}{\omega}
Why is it not ∞? Here are my steps:
Let u = 2+jωt, du = jωdt, dt = \frac{1}{jω}du = -\frac{j}{ω}du
\int^{\infty}_{0}2e^{2+jωt}dt
= -\frac{2j}{ω}\int^{\infty}_{2}2e^{u}du
= -\frac{2j}{ω}\stackrel{lim}{h\rightarrow∞}\int^{h}_{2}2e^{u}du
= -\frac{2j}{ω}\stackrel{lim}{h\rightarrow∞}(e^{h}-e^{2})
To me, this limit does not exist, so why is the answer \frac{j2e^{2}}{\omega}?